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Matematiikan kertauskurssit ja osaaminen

yliopisto-opintojen alussa
Padkirjoitus

Matematiikan osaamisesta on puhuttu paljon eri yh-
teyksissé. Yliopistoilla on erityisesti huomattu tarve lu-
kiomatematiikan kertauskursseille. Tallaisia ovatkin eri
yliopistot kehittdneet hiukan eri ldhtokohdista ja hiu-
kan eri kohderyhmille. On nimittdin melko eri tilanne,
pitdako varmistaa, ettd jokainen pitkdn matematiikan
kurssi on riittdvan hyvin hallussa, jotta ensimméisen
vuoden matematiikan opinnot sujuvat, vai onko var-
mistettava se, ettd matematiikkaa ldhinna menetelma-
né opiskelevalla ihmiselld on riittdva hallinta lukioma-
tematiikan perusteista.

Kertauskursseihin liittyy periaatteellinen dilemma: voi-
daanko yliopistossa antaa opintopisteitéd kurssista, joka
ei sisélla sen erityisempéad yliopistosisdltod, vaan jossa
vain kerrataan jo toivottavasti aiemmin opiskeltuja si-
sélt6ja? Jos voidaan, niin mihin kokonaisuuteen téllai-
set opintopisteet voidaan hyviksy&a?

Toinen puoli tietenkin on pohdinta siitd, ettd ei myos-
kéén ole hyvé, jos ihmiset tulevat kursseille vajavaisel-
la osaamisella. He eivit todennékoisesti saa niin paljon
kursseista irti kuin pitédisi, eika tilanne valttaméatta ole
hyva muillekaan kurssilaisille.

Moniin kieliin verrattuna matematiikan tilanne on kui-
tenkin varsin lohdullinen. Yle raportoi joulukuussa
2025 [1], etté jatkossa joidenkin yliopistojen joihinkin
kielten tutkinto-ohjelmiin voi péaasta, vaikka kieltd ei
olisi opiskellut aiemmin. Ylen artikkeli kertoo, etté tal-
16in opiskelijan on tarkoitus ensimmaéisen opiskeluvuo-
den aikana saada sellainen kielitaito, joka vastaa lukion

lyhyttd oppimédrdd. Tamén jidlkeen voi jatkaa perus-
opintoihin. Ratkaisun takana on se, ettd useita vierai-
ta kielia opiskellaan nykyddn hyvin vdhan. Tama néa-
kyy my0s esimerkiksi eri kielten kirjoittajaméérissa yli-
oppilaskokeessa. Siind missd kevddn 2026 pitkin ja ly-
hyen matematiikan kokeisiin on ilmoittautunut yhteen-
sé 29340 kokelasta, esimerkiksi pitkén ja lyhyen saksan
kokeisiin tdnad kevadna on ilmoittautunut yhteensa 1341
kokelasta ja pitkéan ja lyhyen ranskan kokeisiin 852 ko-
kelasta [2].

Ylioppilaskokeiden kielten kirjoittajien laskutrendisté
olen itsekin kirjoittanut Solmun péékirjoituksessa 3/23
ndkokulmana se, ettd alaméki alkoi jo merkittédvésti en-
nen korkeakoulujen yhteisvalinnan pisteuudistusta, jos-
sa pitkdn matematiikan kokeesta sai reilusti pisteita.
Pisteytysta on itse asiassa jalleen uudistettu: ensi syk-
systéd alkaen pitkd matematiikka ei endd anna niin pal-
jon pisteitd kaikilla aloilla. Toistaiseksi tdmén uudis-
tuksen merkitys kirjoittajaméarien kannalta nayttda
pienelta: edelliseen kevidseen verrattuna pitkdn mate-
matiikan kokeeseen on ilmoittautunut 390 kokelasta eli
2,69 % viahemmaén kuin vuotta aiemmin ja lyhyen ma-
tematiikan kokeeseen on ilmoittautunut 1024 kokelasta
enemmén [2]. Pitkdn matematiikan kokelasmééran vé-
heneminen on siis hyvin viahaisté, eikd todennakoisesti
vaikuta mitenkédan siithen, millaisilla esitiedoilla opiske-
lijat tulevat yliopistolle.

Anne-Maria Ernvall-Hytonen
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Viitteet https://yle.fi/a/74-20199131
[2] Ylioppilastutkintoon osallistujat kokeittain (kaikki
[1] Minna Matintupa. Yliopistojen kieliopinnot ava- kokelaslajit) tutkintokerrat kevdt 2025 ja kevit
taan ummikoille — professori syyttdd peruskou- 2026.
lua suomalaisten kielitaidon néivettymisestd. Yle https://tiedostot.ylioppilastutkinto.fi/
12.12.2025. ext/stat/FB2026KT2001 . pdf
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Pupujussin kuolema

Markku Halmetoja

Katselin hiljattain ikkunastani takapihalle séatilaa ar-
vioidakseni ja havaitsin pensasaidan vieressa vilkasta
lilkehdintda. Joukko harakoita ja variksia ndytti pité-
van kiivaanpuoleista torikokousta. Thmettelin, mité na-
maé kaksi eivéit aivan ystavéllisissa véleissé olevaa hei-
moa keskenddn puuhaavat, kunnes néin, ettd ne olivat
yhteisella aterialla. Ruokalistalla oli edesmennyt pupu-
jussi, jota linnut kilvan néykkivit terdvilla nokillaan.
Linnut eivét eldvin pupun kimppuun kéavisi; kuolinsyy
lienee ollut loukkaantuminen tai vanhuus. Luonnossa
mikaédn ei mene hukkaan: toisen kuolema on toisen elé-
ma. Tatd kiertokulkua siind miettiessdni muistin, etta
olin parikymmenté vuotta sitten ratkaissut aihetta si-
vuavan tehtdvin. Kyseessé oli Helsingin yliopiston ma-
tematiikan laitoksen sivulta 16ytdmaéni differentiaaliyh-
taloité sisdlténeen kurssin laskuharjoituksen tehtéva:

Petolintu lentdd 50 metrin korkeudella ja havaitsee
suoraan alapuolellaan pupujussin. Lintu ldhtee syoksy-
mddn vakiovauhdilla v kohti pupua, joka samalla het-
kelli lihtee loikkimaan nopeudella 10 m/s kohti sadan
metrin pdassd olevaa kotikoloaan. Lintu suuntaa syok-
synsd joka hetki pupua kohti. Mikd on pienin v, jolla
lintu tavoittaa pupujussin?

Laadin tuolloin tilanteesta erilaisia yht&loitd, mutta
jokin tuntui aina estidvin ratkaisuun péadsyn. Aikani
veivattuani kysyin neuvoa laskuharjoituksen tekijalta
Petri Olalta (hénelle kiitos), ja hén opastikin asetta-
maan tilanteen koordinaatistoon kuvion osoittamalla
tavalla. Kun vield merkitddn ¢ = 50m, b = 100m ja
u = 10m/s, padstain todella kauniisiin yhtéléihin.

Alkakoon linnun sy6ksy hetkelld ¢ = 0 ja olkoon y =

f(z) linnun ratakdyran yhtdls. Lintu ldhtee origosta
ja syoksy alkaa kohtisuoraan alas, joten f(0) = 0 ja
f/(0) = 0. Linnun syoksymisnopeus v(> u) on pienin
mahdollinen silloin, kun se tavoittaa pupun sen kotiko-
lon edustalla. Siis f(a) = b.

(a,b) # kotikolo

g (a,ut)

Jos lintu on hetkelld ¢ pisteessé (x, f(x)), niin se on ai-
kavalilla [0, t] kulkenut matkan vt ja toisaalta matka on
kdyran y = f(z) valilla [0, z] olevan osan pituus. Siis

ot = /O VTP de. (1)

Hetkell& ¢ pupu on pisteessa (a, ut). Koska linnun syok-
sy suuntautuu jatkuvasti pupua kohti, saamme sen len-
toradan kohdassa x olevan tangentin kulmakertoimen

sisallysluetteloon
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eli funktion f derivaatan esitettyéd pupun sijainnin avul-

la,
o = S
mistd seuraa
ut = f(z) + f'(z)(a — ). (2)

Eliminoimalla ¢:n yhtdloista (1) ja (2) saamme yhté-
16n, josta ratkeaa ratakiyra y = f(z), ja sen avulla v.
Aluksi pahalta nayttava yhtalo

o [ VIFTF@P d = f(@) + 1 )(a o)
siistiytyy derivoimalla muotoon

L ATF@P= @2 ()

Merkitsemalla p = f'(x), jolloin f”(z) = g—g, saamme

(3):sta
U dp
21 L2 = _
SVi+pt=—la—a),

mistd muuttujat erottamalla tulee

dp u dzx

V1+p? B

ja edelleen integroimalla

In(p++/1+p?) :—%ln(a—x)—!—A.

Koska p(0) = f'(0) = 0, saamme A = % Ina, ja yhtilo
sievenee muotoon

ln(erm):%ln( a4 >

a—x

va—2x’

Huomaamalla, ettd tdmén yhtdlon vasen puoli on hy-
perbolisen sinin® kiinteisfunktio, saamme

p=snn (i (2)")
)

= f'(@).

Kirjoittamalla derivaatta muotoon

Fo-30-2 - 50- 9"

a a

saadaan integroimalla

f) = 2(va—1|)— u) (1 a §>1+U/U
- ﬁ(l - E)H/U +B

Ehdosta f(0) = 0 seuraa

a v v auv
B:7< - ): 2 27
V—U v+u V¢ —U

joten ratakédyrédn yhtalé on

av N\ 1+u/v
= - 1 -
/(@) 2(v+u) ( a)
av z\ 1-u/v auv
S . v
2(v—u)< a) +U2—u2

Ehdosta f(a) = b saamme v:n ratkaisemiseksi yhtalon

auv

fla)= 5—=5 =",

V2 — u2

miké annettujen numeeristen arvojen sijoittamisen jal-
keen pelkistyy muotoon

v? — 5v — 100 = 0.

Haukalta vaadittava nopeus on siis

v = 3\/5+5/1Tm/s ~ 12,81 m/s.

Seuraavana aamuna linnut olivat poissa eikéd pupusta
nékynyt suolen patkadkadn. Ilmeisesti kettu oli yon pi-
meydessa kaynyt kuittaamassa oman osansa saaliista.

*) Hyperbolisia funktioita sinh ja cosh ei ehki niy ny-
kylukion oppiméaérassa. Niiden méaritelmét ovat kui-
tenkin perin yksinkertaiset:

coshz = 3(e® +e™®) ja sinhz=4(e” —e ).

Vilittomasti ndhdéan, ettd funktiot ovat toistensa de-
rivaattoja ja ettd coshx > 1 kaikilla x € R. Taten
hyperbolinen sini on aidosti kasvava ja silld on kéén-
teisfunktio:

y=sinhz = (" —e™ ")
—

z=sinh 'y = In(y++/1+12).

Hyperbolisten funktioiden nimet muistuttavat trigono-
metristen funktioiden sinin ja kosinin nimié. Funktioil-
la onkin mielenkiintoinen ja syvéllinen yhteys, mika
paljastuu, kun ndmé funktiot maaritelladn kompleksi-
luvuille. Sitd kannattaa matematiikasta kiinnostuneen
lukiolaisen odottaa ja tehd& ahkerasti toité, jotta péaa-
see matematiikan syventaviin opintoihin yliopistossa.

sisallysluetteloon
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Miksei funktiota e~ voi integroida? (Osa 2/2)

Milo Orlich
milo.orlich@alumni.aalto.fi

Tam4 on artikkelin [3] jatko. Téssé osassa todistetaan
Liouvillen lause. Tatéd lausetta ja Lausetta 29 lukuun
ottamatta artikkelin ensimmaéisen osan tuloksia ja méaa-
ritelmia ei toisteta.

Jatkossa kéytetddn seuraavaa notaatiota.

Maaritelma 1. Jos laajennusta K(a) halutaan laa-
jentaa lisad alkiolla 8, niin merkinndin K(«)(8) sijaan
kirjoitetaan K(a, ). Ja samoin jos on monta alkiota
a1, ..., Qn, kirjoitetaan K(aq, ..., ap).

Toistetaan Liouvillen lauseen (eli artikkelin ensimmaéi-

sen osan Lauseen 29) vaite:

Lause 2 (Liouville). Olkoot K derivaatan suhteen sul-
jettu kunta meromorfisia funktioita ja o € K. On ole-
massa kunnan K alkeislaajennus L ja sellainen y € L,

ettd y' = «, jos ja wvain jos on olemassa sellaiset
UL, ..y Up, v € K jacy,...,c, € C, ettd
n ul
a=)Y ¢4+, 1
2 v

Liouvillen lauseen muoto on ”jotain < jotain”, joten
pitéda todistaa, ettd implikaatio patee molempiin suun-
tiin. Aloitetaan yksinkertaisemmasta implikaatiosta.

Implikaation 7<= todistus. Oletetaan, ettd on olemas-
sa sellaiset uy,...,u,,v € Kjacy,...,c, € C, ettd yh-
talo (1) pétee. Jos on olemassa sellaiset ig € {1,...,n}
jaa €K, etta

niin madritellidn v := v + ¢;,a. Jos tdmé tapahtuu
uudelleen, niin méaritellddn v kunnan K alkioiden de-
rivaattoja vastaavien yhtdlon (1) termien summaksi.
Voidaan siis olettaa, ettd jokaisella indeksilld ¢ ei ole
olemassa sellaista a € K, ettd u}/u; = o’. Liséksi voi-
daan olettaa, ettd vilissé I, jossa v ja kaikki funktiot u;
on médritelty, patee u;(z) # 0 jokaisella alkiolla x € T
ja indeksilld ¢ € {1,...,n}, tai muuten otetaan osavili
JCI.

Madritelladn nyt a; := logu; jokaisella i € {1,...,n}.
Voidaan olettaa, ettd a; ¢ K(ay,...,a;—1), tai muuten
a; yksinkertaisesti ohitetaan. Sitten L := K(ay,...,ay)
on kunnan K alkeislaajennus. Koska kaikki funktiot a;
sekéd v kuuluvat kuntaan L, saadaan myos

n
Y= Zciai + v el.
i=1

Derivoimalla tamé saadaan

Y —cha + —ch +v =a.

’L

O

Huomautus 3. Jos etsitiadin integraalifunktiota kun-
nan K wulkopuolelta, ainoa mahdollisuus saada se on
lisaamalld adrettéomdan monta logaritmifunktiota! Esi-
merkiksi rationaalifunktiolla % et ole integraalifunk-
tiota kunnassa C(x), mutta kylli on laajennuksessa
C(z)(Inz) = C(z,Inz).

sisallysluetteloon
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Liouvillen lauseen implikaation ”=" todistus tulee ole-
maan melko pitka ja tehddén eri tapauksissa. Ensin ke-
ratddn paljon apulauseita seuraavassa luvussa. Liouvil-
len lauseen implikaation ”=>" todistus alkaa sivulla 12.
Todistus jatkuu eri tavalla riippuen siitéd, onko kysees-
sé oleva funktio transkendenttinen eksponenttifunktio
(niin kuin kirjoituksen otsikossa) vai algebrallinen.

Todistuksen perusainekset

Tehtava 4. Tarkista, ettd seuraava yhtdlo pitdd paik-

T T N !
1for fn J1 L n
fiforfo S e fn. @)

Tulemme kdyttamdadn sitd ja erikoistapausta

(fo)) _f ¢
fo g

pari kertaa jatkossa.

Meromorfisen funktion poolit

Maaritelma 5. Olkoot f ja g holomorfisia funktioita
jossain kompleksitason avoimessa osajoukossa U. Me-
romorfisen funktion u ((xg poolit (eli navat) ovat funk-

tion g nollakohdat.

Huomautus 6. Ainoa poolien sovellus, jota kdaytim-
me jatkossa, on siindg tapauksessa, etti kyseessd oleva
meromorfinen funktio on rationaalifunktio eli kahden
polynomin osamddrd % Oletetaan ettc'i P ja Q ovat

P(z) _ P(z)

Q(z)  w(r—21)9 (1 — 29)92 -+ (1 — 2,)on
Tassd z1,...,2, ovat eri kompleksilukujo, w € C
ja ai,...,a, ovat posititvisia kokonaislukuja. Tietysti

P(z) # 0 katikilla i. Sanotaan, ettd z; on funktion SEGE%

a;-kertainen pooli, toisin sanoen poolin z; kertalu-

ku on a;. Huomaamme nyt, ettd rationaalifunktion de-

rivaatta on sekin rationaalifunktio, ja sen poolien ker-

taluvut ovat vélttamdttd > 1: jos siis kirjoitetaan
P(x)

@)
Q) ~ @—z)m

jossa rationaalifunktio f(x) sisdltida kaikki muut termit
(x — 2;)%, niin

d P@)  (z—2)"f'(z) —ai(x — 2)" " f(=)
dz Q(z) (x = z)%™
@)l — il (2)
(x — z;)%it] ’

eikd z; ole viimeisen osoittajan nollakohta.

Transkendenttisuudesta

Lemma 7. Olkoon « transkendenttinen alkio ja olkoot
P ja Q kaksi eri polynomia. Talloin P(a) # Q(«).

Todistus. Jos P(a) = Q(«), niin « on polynomin P—Q
juuri. Transkendenttisuuden takia tdmaé tarkoittaa, et-
td P — @ on nollapolynomi, eli P = Q. O

Lemma 8. Olkoon g(x) € C(x) rationaalifunktio, joka
ei ole vakio. Tallgin funktio e9®) on transkendenttinen
kunnan C(x) suhteen.

Todistus. Oletetaan, ettd e? on algebrallinen kunnan
K := C(z) suhteen. Silloin on olemassa sen minimipo-
lynomi

P=X"+f X" 4+ iX + fo € K[X].

Derivoidaan yhtalo P(e?) = 0 eli

ey +f‘n_16(n71)g + ... +fleg +f0 =0

saaden

ng'e™ + (fi_y +(n—1)fr_1g')e" D9+
+ (fi + 9 fr)ed+f5 = 0.

On siis olemassa toinen n-asteinen polynomi, jonka ar-
vo funktiolle €9 on nolla. TAm&a on valttdméatta poly-
nomin P kerrannainen, ja korkeimman ja pienimmén
asteen kertoimet ovat verrannolliset:

B
fo
Kirjoitetaan rationaalifunktio fo € C(z) osoittajan ja

nimittdjan tulona lineaarisia, pareittain erillisia tekijoi-
ta:

(4)

ng

m

fo= H(w— z)%, meN, z e€C(x), aj € Z\{0}.

i=1
Sen derivaatta on

fo =laa(e —21)" 7z — 29)

+ [Oém(l‘ - Zl)al e (x - Zm—l)am_l('r - Z,,n)

J
_Zalx—ozl _fozx—zZ

i=1 i=1

.. (ZL’ — Zm)a"”} + ..
amfl}

Tamén ja yhtdlon (4) avulla saamme, etté

Huomaamme nyt, ettd oikealla puolella olevan funk-
tion poolien kertaluku on 1, kun taas ng’ on rationaa-
lifunktion derivaatta, jonka poolien kertaluku on aina
suurempi kuin 1 (ks. Huom 6). TAm4 on ristiriita. O

sisdllysluetteloon
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Osamurtokehitelméa

Seuraava apulause on se, jota kdytetdén eniten Liouvil-
len lauseen todistuksessa. Siind tapauksessa, ettd ky-
seessi oleva funktio on transkendenttinen (niin kuin
artikkelin otsikossa), kéytetddn pelkéstddn seuraavaa
lausetta.

Lause 9. Olkoot K kunta ja f € K(X) rationaalifunk-
tio, jonka nimittiji ei ole vakio. Tdlléin on olemassa

o luonnollinen luku N € Z~g,

e N pareittain  erillistdé  jaotonta  polynomia
Vi,..., VN € K[X], joiden korkeimman asteen ter-
min kerroin on 1,

o N luonnollista lukua mq, ...,

o jokaisilla i € {1,...,N} jak € {1,...,
mi Sk, € K[X], jolle deg Sk; < degV,

« polynomi Sy € K[X]

mpy € Z>0:

m;}, polyno-

siten, etta
N m;

zlkl’

Todistus. Kirjoitetaan f = P/Q, missd P,Q € K[X]
ovat keskenddn jaottomat ja deg @ > 1. Olkoon

Q= Vv
alkutekijahajotelma (eli V; # Vj, ja kaikki V;:t ovat
jaottomat). Jos N = 1, niin funktio on jo yhtdlon (5)
muodossa. Jos N > 1, polynomit V}"* ja

Q= Vi Vi

ovat keskenddn jaottomat. Bézout’n yhtalon (ks. artik-
kelin osa 1) mukaan on olemassa S,T € K[X] siten,
ettd SV +TQ = 1. Nyt voidaan kirjoittaa

P PSSV +TQ) PS PT
f=F=——=m7r— == Vo

Q e Q
missd jalkimmaisen yhteenlaskettavan nimittdja on
jaottoman polynomin potenssi. Jos N — 1 > 1, tois-
tetaan sama prosessi, jolloin saadaan

PT
‘/11/1 )

f—*-|- *
_é ‘/'2"2

missé CZQ =Vy? .- V" japikku tédhdet esittévit sopivia
polynomeja. Airellisen monen askelen jilkeen saadaan

Ry
— .. 5
f Vll/1 + VUN VU, ( )
joillain polynomeilla R;,...,Ry € K[X]. Mikali

deg R; > degV; tietylld indeksilld ¢, Eukleideen algo-
ritmin avulla saadaan sellaiset Q; ja 5;, ettd R; =

Q:Vi + S; ja degS; < degV;. Silloin summan (5) i:s
yhteenlaskettava voidaan kirjoittaa muotoon

R,  QiVi+S;  Q S

‘/iVi V'Z_Vi - ‘/iu,;fl ‘/iVi .
Mikali deg(Q;) > deg(V;), sama prosessi toistetaan,
kunnes ‘
R; o~ Sk.i
x; ; k>
Vi Vi

missé deg Si,; < degV; jokaisella k € {1,...,m;}.

Lopuksi, mikéli polynomin V; korkeimman asteen ter-

min kerroin on a # 1, voidaan mééritella V; := % ja
5 S . _
Sk,i == k‘l .
Sk . Sk
termin kerrom onkin 1, ja = =5t O

vk

Esimerkki 10. FEdellistd lausetta kaytetddn jatkossa
“teoreettisena” tuloksena, emmekd ole kiinnostuneita
erityisistd rationaalifunktioista. Voi olla kuitenkin hyo-
dyllistd kdydda todistus ldpi ymmdrtddksesi, miten se
toimii. Esimerkiksi siind tapausessa, ettd annettu ra-
tionaalifunktio on g = ;”—_:1, nitn N = 1 ja ainoa ni-
mittdjin jaoton tekijé on Vi = x + 1. Voit tarkistaa,
ettd lauseen todistus tuottaa osamurtokehitelmdn

2 (@ -1+1)(z+1) 1
z+1 z+1 z+1

1
=2 —rx+1- ——
r+1
Tamda onkin helppo rationaalifunktio. Voit kokeilla itse
vaikeampia esimerkkejd.

Polynomin juuret

Alkio r on polynomin P juuri, jos P(r) = 0. Toisin
sanoen r on polynomiyhtélén P(z) = 0 ratkaisu. Al-
gebran pddongelma on 16ytda tillaisia juuria. Jos ker-
roinjoukko on liian pieni, on vaikeaa 16ytaa niité, joten
joukkoa laajennetaan:

e Polynomilla X + 1 ei ole juurta joukossa N, mutta

silld on juuri —1 joukossa Z.

e Polynomilla 2X — 1 ei ole juurta joukossa Z, mutta

11 . =1 . -
silla on juuri 5 joukossa Q.

 Polynomilla X? — 2 ei ole juurta joukossa Q, mutta
silld on juuri V2 joukossa R.

o Polynomilla X2 + 1 ei ole juurta joukossa R, mutta

silld on juuri ¢ joukossa C.

Kuten nidimme, Q C R C C on ketju kuntalaajennuk-
sia. Juuri tdméan takia kuntalaajennuksia tutkitaan: ha-
luamme laajentaa kuntaa niin, etta juuria loytyy. Huo-
maa, ettei tarvitse ottaa kuntaa R juuren 16ytédmiseksi
polynomille X? — 2 € Q[X]: laajennus Q(y/2) riittéia.

Lause 11 (algebran peruslause). Jokaisella epivakiol-
la polynomilla P € C[X] on jokin juuri joukossa C.

sisallysluetteloon
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Itse asiassa tdtéd lausetta voi kdyttdd todistamaan, et-
td m-asteisella kompleksikertoimisella polynomilla on
tdsmalleen m juurta, jos lasketaan kertalukuja. Toisin
sanoen, m-asteinen polynomi P € C[X] voidaan kir-
joittaa tulona lineaarisia termejé

PX) = (X —2)(X = z2) - (X = zm),

missé jotkut juuret z; € C voivat toistua. (Vaikka edel-
listd lausetta kutsutaan ”peruslauseeksi”, se ei ole mi-
kédn triviaali tulos.) Tamé& seuraa edellisesta lauseesta
ja siitd, ettd r on polynomin P juuri jos ja vain jos
X — r jakaa polynomin P, eli P = (X — r)Q jollakin
polynomilla Q. (Ks. kirjan [2] Lause 22.9.)

Maaritelma 12. Olkoot P polynomi ja r sen juuri.
Juuren v kertaluku on korkein n, jolle (X —r)" jakaa
polynomin P, eli korkein n, jolle voidaan kirjoittaa

P=(X-r"Q,

jossa Q(r) # 0.

Lemma 13. Polynomille P € C[X] seuraavat ehdot
ovat yhtdapitdvdt:

o kaikkien P:n juurien kertaluvut ovat =1,
e P ja P’ ovat keskenddn jaottomat.

Todistus. Oletetaan, ettd polynomilla P on juuri r, jon-
ka kertaluku on n > 1. Télléin P(X) = (X —r)"Q(X)
jollain sopivalla @, jolle pitee Q(r) # 0. Talldin
P'(X) =n(X —r)"71Q(X) + (X — r)"Q'(X),

joten P’(r) = 0. Tama4 tarkoittaa, ettd X —r jakaa myos
polynomin P’. Jos sen sijaan n = 1, niin P’'(r) # 0, eli
r ei ole derivaatan juuri. Mutta koska polynomin P
rien kertaluvut ovat = 1, niin P ja P’ ovat keskendin
jaottomat. O

Olkoon m € Zsg. Kirjoittamalla jatkossa C; tarkoi-
tamme, ettd karteesiselle tulolle C™ = C x - - - x C ote-
taan koordinaatit (wq,...,w,,). Seuraavakin lause on
melko kuuluisa.

Lause 14 (Implisiittisen funktion lause). Olkoot
m,n € Zsg ja A tulon C**™ = C? x C™ avoin joukko.
Olkoon F = (Fy,...,F,): A — C™ holomorfinen funk-
tio. Olkoon (2°,w%) = (29,..., 20, w9, ... ;w0 € A sel-
lainen piste, ettd F(2°,w") = 0 ja Jacobin matriisi sii-
nd pisteessd, eli

AF (2°,w°) . AF, (2°,w?)
821 6Z1
: : ;
R (2"w?) Oy (2"w")
Ozn, Ozn

on kéddntyvi. Talloin on olemassa pisteen 2° € C"
avoin ympdristé U, pisteen w® € C™ avoin ympdris-
to V ja holomorfinen funktio h: V — U siten, ettd

e UXxV C A,
o F(h(w),w) =0 kaikilla w € V,
o h(w®) = 2°.

Lause 15. Olkoon K kunta meromorfisia funktioita re-
aalivilissi I ja olkoon P € K[X] m-asteinen jaoton po-
lynomi. Tdllgin jollekin osavdlille J C I on olemassa
sellaiset pareittain erilliset meromorfiset funktiot

flw-'vf?n: J_>C7

ettd P(f;) =0 jokaisellai=1,...,m.
Todistus. Olkoon

Q(x) =™+ cp12™ -+ 11 + o € Cla]

sellainen polynomi, jolla on m parittain erillistd juurta
21, .-+, 2m € C. Lemmasta 13 seuraa, ettd polynomeilla

Q ja .
Q' (x) = Z icix'™!
i=1

ei ole yhteisia tekijoité, joten Q' (z;) # 0 kaikilla 7. M&&-
ritellddn holomorfinen funktio

F:Cmt > C,

m—1) = 2"+ a1+ + a1z + ag.
Haluamme nyt kayttad Lausetta 14, ja paatelliksemme
Jacobin matriisin kidadntyvyyden riittd4 huomata, etta

oF
7(2@007 .

o cem—1) = Q' () #0

jokaisella ¢ € {1,...,m}. Kiytdmme Lausetta 14
m kertaa, yhden kerran jokaisella z;. On olemassa pis-
teen (co, . .., Cm—1) avoin ymparistd V C C™, pisteiden
z; avoimet ymparistét U; C C ja m holomorfista funk-
tiota h;: V — U; niin, etta

o jokaisella (ag,...,am-1) €V

F(hi(ao, e ,am_l), agp, - .-, am_l) = O,

eli h;(ag,...,am_1) on polynomin o™ +a,, 1™+
-+« + ag juuri;
o hi(co,...,Cm—1) = z; jokaisella i € {1,...,m}.
Olkoon nyt

P(X) = igiXi € K[X]
=0

polynomi kuten lauseen viitteessé. Voimme olettaa, et-
td kaikki funktiot g; ovat maaritellyt vélissa I, tai muu-
ten otetaan sellainen osavéli. Voimme my0s olettaa, et-
té funktio g,, ei ole koskaan nolla vélissd I. Toisin sa-
noen, voimme jakaa funktiolla g,,, tai itse asiassa olet-
taa alusta alkaen, ettd polynomin P korkeimman as-
teen termin kerroin on g,, = 1.

sisallysluetteloon
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Jokaisella reaaliluvulla ¢t € I méaritelladn polynomi

m

P(z) := Zgi(t)xi € Clx].

=0

Etsimme sellaisen ¢y € I, ettd polynomilla P;, on m pa-
rittain erillistd juurta. Koska P on jaoton, P ja P’ ovat
keskendén jaottomat. Bézout’n lauseen mukaan (ks. ar-
tikkelin osa 1) on olemassa sellaiset S, T € K[X], etta

SP+TP =1. (7)

Voimme olettaa, ettd polynomien S ja T kaikki kertoi-
met — jotka ovat kunnan K alkioita, eli funktioita —
ovat madaritellyt vélissa I, tai muuten otetaan osavali.
Jokaisella ¢ € I voimme siis mééritelld polynomit P/,
St ja Ty samalla tavalla kuin polynomin P;. Yhtélosta 7
saamme yhtalon

S,P,+ TP =1,

joka pétee renkaassa C[z]. Téstd seuraa, ettd P; ja P/
ovat keskenddn jaottomat, ja Lemman 13 nojalla tdméa
tarkoittaa, ettd polynomilla P, on m erillistd juurta.
Tama pitdéd paikkansa jokaisella reaaliluvulla ¢ vélissa
1, tai osavilissi J, jos sitéd tarvitaan. Sellaiset polyno-
mit P; ovat niin kuin polynomi @ todistuksen alussa.
Olkoon siis ¢ty € J ja olkoot zi,..., 2, polynomin P,
juuret. Voimme kayttda funktioita hq,...,h,, saadak-
semme viitteen funktiot

fl(t) = h; (.QO(t)v s 7gm—1(t))

pisteen ¢y ymparistossd. Huomaa, ettd funktiot f; ovat
holomorfisia vélin J kompleksiympéristossa. O

Symmetriset polynomit

Maaritelma 16. Funktiota o: A — B kutsutaan bi-
jektioksi, jos o on sekd injektio ettd surjektio, eli

e josa #d, niin o(a) # o(a’),

o jokaisella alkiolla b € B on olemassa sellainen a €
A, ettd o(a) =b.

Jos A = B, niin bijektiota 0: A — A kutsutaan per-
mutaatioksi.

Huomautus 17. Joukon {1,2,...,n} permutaatio on
siis bijektio o: {1,2,...,n} = {1,2,...,n}. Toisin sa-
noen o on jarjestyksen sekoittaminen”. Joukon {1,2}
kaksi mahdollista permutaatiota ovat o1 ja o2, missd

o1(1)=1, 01(2) =2 ja o2(1) =2, 02(2) =1.

Joukon {1,2,3} mahdolliset permutaatiot ovat funktiot
O1,...,06, joiden arvot ;(1), 0,(2) ja 0;(3) ovat

1,2,3, 2,1,3, 3,2,1, 1,3,2, 2,3,1 ja 3,1,2.

Masritelma 18. Polynomia P € K[zq,. ..
taan symmetriseksi polynomiksi, jos

, T kutsu-

P(xl,...,a:n) = P(ma(l),...,wa(n))

milld tahansa indeksien permutaatiolla o.

Jos kirjoitetaan x ja y x1:n ja xo:n sijaan, esimerkiksi
renkaassa K[z, y] polynomit 22 + y? ja xy ovat sym-
metriset, mutteivit polynomit z2 + vy ja 23y.

Jokaisella  luonnollisella  luvulla n  renkaassa
K[z1,...,2,] on olemassa tarkeitd symmetrisia po-
lynomeja, nimittdin niin kutsutut symmetriset pe-
ruspolynomit:

S1 =1+ T2+ -+ Ty,

S2 1= 21T +21T3 + -+ + Tp_1Tn,

Sp ‘= X1T2 " Tp.

Néma ovat symmetristen polynomien ”atomit”, sillé jo-
kainen symmetrinen polynomi voidaan esittdd niiden
polynomina seuraavan kuuluisan lauseen mukaan.

Lause 19 (Newton). Olkoot R rengas ja S €

Rlx1,...,x,] symmetrinen polynomi. On olemassa yk-

sikdsitteinen polynomi Q € Ry, ...,yn] siten, ettd
S(x1,. .. xn) = Q(s1,- -

»Sn)-

Esimerkki 20. Renkaassa R[x,y] symmetriset perus-
polynomit ovat x + y ja xy. Esimerkiksi 2 + y2 on
symmetrinen ja

2?9 = (z+y)? - 2zy).

Eli lauseen vastaava polynomi Q € Rlyi,y2] on yi —
2y2.

Lause 21. Olkoot K kunta, m € N ja P € Klz] m-
asteinen polynomi, jolla on pareittain erilliset juuret
Z1, .- 2m jossakin sopivassa kunnan K laajennukses-
sa. Jos S € Klzy,...,x,] on symmetrinen polynomi,
niin S(z1,...,2m) € K.

Todistus. Lauseen 19 avulla voi kirjoittaa

S(x1,...,2m) = Q(S1,---,5m)
sopivalla polynomilla @ € Klyi,...

sesti

,Ym). Eksplisiitti-

PX)=(X-21)(X —22) - (X — 2n)

=X" g X" M4 aX™ 24,
joillain ai,...,a,, € K. Huomaa, ettdi a; =
si(#1,.-.,2m) jokaisella ¢ € {1,...,m}. Joten
S(#1,- -5 2m) = Q(ag,...,am), ja tdmé on kunnan K
alkio. O

sisdllysluetteloon
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Algebralliset alkiot, joilla on sama minimipoly-
nomi

Olkoot K kunta ja IL sen laajennus. Olkoot f,g € L\K
kaksi algebrallista alkiota, joilla on sama minimipoly-
nomi P kunnan K suhteen. Tamén pykéldn péaitulos
on Lause 24: siiné tapauksessa, ettd K on kunta, jossa
voidaan ottaa derivaatta, niin voidaan sijoittaa f ja f’
alkioiden ¢ ja ¢’ paikalle tietylld tavalla.

Tehtava 22. Oletetaan, ettd algebralliset alkiot f ja g
ovat niin kuin edelld, ja olkoon P niiden minimipolyno-
mi kunnan K suhteen. Olkoon n := deg(P) — 1. Silloin
kunnan K(f) alkio on muotoa a = Y., a;f* joillain
a; € K. Mddritellidan nyt funktio

T K(f) —Klg), Y aif Y aig,
1=0 =0

joka sijoittaa alkion g alkion f paikalle. Osoita, ettd
m(a+0b) =7(a)+ () ja w(ab) = w(a)m(d)

jokaisella a,b € K(f). (Toisin sanoen tamd funktio w

on kuntien vdlinen isomorfismi. )

Lemma 23. Samalla notaatiolla w(f') =g’

Todistus. Samalla tavalla kuin artikkelin ensimmaéisen
osan Lemman 27 todistuksessa voi osoittaa, etta

f/ — Z?:O a;fz ja g/ — Z?:O a;gz
Dy dag fi! i daigt

Edellisen tehtédvin nojalla,

m / A
r(f') = — 2L
Zi:l ia;m(f)~
Tamé on yhta kuin ¢/, koska 7(f) = g. O

Lause 24. Olkoot K kunta meromorfisia funktioita ja
f, g kakst algebrallista alkiota kunnan K suhteen. Ole-
tetaan, ettd alkioilla f ja g on sama minimipolynomsi
P € K[X]. Olkoon Q € K[Y, Z] kahden muuttujan po-
lynomi, ja oletetaan, ettd Q(f, f') € K. Talloin

QUf, ) =Q(g,9).

Todistus. Koska funktion 7 rajoittuma kuntaan K on
identiteetti,

QUL ) =mQ(f. )

Edellisen tehtdvin nojalla

m(Qf ) = Qx(f), = (f")).

Lopuksi tiedetaén, ettd 7(f) = g suoraan méairitelmés-
ta ja 7(f’) = ¢’ edellisestd lemmasta. O

Téta pykaldd voi varmaan 1dhestyd helpommin, jos niin
sanotun tekijarenkaan késite ja ensimméinen homo-
morfismin lause ovat tutut. (Ks. kirjan [2] pykéldt 16
ja 20.) Téasta ndkokulmasta olisi ilmeista, ettd K(f) ja
K(g) ovat "likimain sama asia”.

Implikaation ”=" todistuksen alku

Oletetaan, etté on olemassa alkeislaajennus IL niin kuin
lauseen viitteessa. Eli L = K(f1,..., fy) joillakin al-
keisfunktioilla f1, ..., fn. Todistus tehdédédn induktiolla
N:n suhteen. Jos N = 0, niin . = K, ja on olemassa
funktion « integraalifunktio y € L. Siis v := y kelpaa.
Kun N > 0, kirjoitetaan

K(f1,-- - fn) = K1) (f2r-- -5 fn)

ja oletetaan, ettd véite pitdéd paikkansa kunnalle K(fi),
eli on olemassa sellaiset t1,...,t,,w € K(f1) ja
dy,...,d, € C, ettd

n t,lt-
i=1

Jatkossa etsimme funktioita wuq,...,u,,v funktioi-
den tq,...,t,,w kautta ja kompleksilukuja cy,...
kompleksilukujen dy, ..., d, kautta.

7Cn

Riippuen siitd, onko f; transkendenttinen (ekspo-
nentti- tai logaritmifunktio) vai algebrallinen alkio kun-
nan K suhteen, todistus sujuu eri tavalla. Téassa kir-
joituksessa kidymme l&pi ne tapaukset, ettd f; on
transkendenttinen eksponenttifunktio tai algebrallinen,
ja transkendenttisen logaritmifunktion tapaus jatetdan
tehtéavaksi.

Implikaation ”=" todistuksen jatko: jos
f1 on transkendenttinen

Koska f1 on transkendenttinen alkio, jokainen yhtalos-
sd (8) oleva funktio ¢; € K(f;) voidaan esittédéd osaméé-

rana
. Bilf)
Qi)

sopivilla keskendén jaottomilla polynomeilla P;, @Q; €
K[X]. Koska

identiteetista (8) tulee
—~ . (B(f)
o=y di——F —
; Pi(f1)

Olkoot Ry, ..., Ry kaikkien polynomien P; ja @; kaik-
ki jaottomat tekijit, toistaen mahdollisesti monta ker-
taa ne, jotka esiintyvit eri polynomeissa ja korkealla
potenssilla. (Eli voi olla, ettd R; = R;, vaikka ¢ # j.)
Huomaa, ettd N > n. Identiteetin (2) nojalla voidaan
kirjoittaa (9) muodossa

sisallysluetteloon
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joillain sopivilla kompleksiluvuilla e;. Olkoon u; € K
polynomin R; korkeimman asteen termin kerroin, jo-
ten voimme kirjoittaa R; = u;M;, missd polynomin M;
vastaava kerroin on 1. Identiteetin (3) avulla

a—E eZ E el + '

Voi olla, ettd jalkimmaéisessd summassa M; = M; vaik-
ka i # j. Kirjoitetaan sitten yhteen ne polynomit M;,
jotka toistuvat niin, etta

4—2:5z +w'

(10)
sopivilla uusilla kertoimilla ¢; ja luonnollisella luvul-
la N<N.

Loppusilaukseksi, koska w on kunnan K(f;) alkio, on

olemassa sellainen g € K(X), ettd w = g(f1). Sovelle-
taan télle funktiolle g Lausetta 9 saaden

N m;

w=So(f)+ Y3 T
i=1 k=1 l
Yhtéalosta (10) tulee siis
LS (GG
a=Ye—t+> & Mz(f) + (So(f1))’ (11)
=1t =1 i1
N m N m;
~ (Ski(f1)" S,i(f1)(Vi(f1))
+;k§ VE(f) 2;k Vi ()

Jos fi on eksponenttifunktio

Olkoon f; transkendenttinen eksponenttifunktio kun-
nan K suhteen.

Lemma 25. Olkoon

P(X)=anX™+ (am #0)

m
o Fag = E a; X",
=0

m-asteinen polynomi renkaassa K[ X]. Talloin polyno-
mille

m

P(X):= (i +a}) X" € K[X]
=0
pitee (P(f1))' = P(f1).

Todistus. Koska f; on eksponenttifunktio kunnan K
suhteen, on olemassa sellainen b € K, ettd f] = V' f1.

Silloin
(P(f1)) = _aifi+ iaififi"
=0 1=1

= ay +Za;ff +Zia1f—1ff
i=1 i=1

=aj+ Y _(aj +iab)) f}

i=1

Z (a) 4 ia;b) fi = P(f1).
i=0

O

Lemma 26. Kayttden samaa notaatiota kuin edelld
mamb' + al, #0, eli

degﬁ =deg P =m.

Todistus. Jos painvaistoin olisi ma.,b’' + a,, = 0, niin
m\/ __ I m ! pm—1
(am f1")" = ap 1" + mam f1 /1
= f1" + manb' fi"

= (al,, + ma,,b' ) fi" =0

Eli a,f{" olisi vakiofunktio, toisin sanoen kompleksi-
luku. T&ma4 on ristiriita, koska a,, # 0 ja f; on trans-
kendenttinen. O

Lemma 27. Jos a,, on vakiofunktio ja P jakaa poly-
nomin P, niin P on monomi.

Todistus. Koska asteet ovat yhtéd suuret, P jakaa po-
lynomin P jos ja vain jos on olemassa sellainen k € K,
ettd kP = P. Korkeimman asteen (eli m) termeille t4-
mé tarkoittaa

kap, = ma,b' + al, = ma,b,
missd toinen yhtélo péatee, koska a.,, on vakio. Koska
am # 0 seuraa, ettd k = mb'. Talloin amb’ = ia;b’ +a,

eli af—a;(m—i)t/ = 0 kaikilles € {0,...,m—1}. Mutta
sitten jokaisella indeksilla ¢
( a; )/ B agf{”*i —a;(m—1) "~ iy
1 (12
_ap—ai(m—ai)b 0

1

eli az/ f{”_l on jokin vakio ¢; € C. Yhtélostd a; =

afi” ! ja siitd, ettd f; on transkendenttinen, seuraa,
ettd a; = ¢; = 0 jokaisella ¢ € {0,...,m — 1}. Toisin
sanoen P on monomi a,, X™. O

Sovelletaan nyt edelliset huomautukset yhtaloon (11).

Jokaisella ¢ € {1,...,n} on olemassa polynomit

M;, V; € K[X] niin, etté
(M;(f1)) = Mi(f1) Jja (

Vi(h)) = Vi(fr).

sisallysluetteloon
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Samalla tavalla on olemassa polynomit :970 ja 51” Yh-
téalosta (11) tulee sitten

afZel +Z M

+ So(f1) (12)

N mLSz N m; Slf
R S
i=1 k=1 1 =1 k= )

Muistetaan, ettd jos ¢ # j, niin M; # M; ja V; # Vj.
Olkoot M;,, ..., M;_ ne polynomit Joukosta {M;}, jot-
ka eivét ole yhta kuin mikaén polynomi V;. Kun méaa-
ritelldan

L:=ym*t.. v ~t M;, - M.,
niin L(f;) on suurin yhteinen nimittdji identiteetis-
sé (12). Se osamééré, jonka nimittéjé on korkein alkion
V1(f1) potenssi, 16ytyy viimeisesta (tupla)summasta in-
deksiarvoilla ¢ = 1 ja k = my. Voidaan siis kirjoittaa

P(f1)

m +1

VM (Ve () (f1)M;, (f1) -

:_M
T ()

jollain sopivalla polynomilla P € K[X]. Kerrotaan mo-
lemmat puolet alkiolla fiL( f1), jolloin saadaan

M;, (fr)

_milp(fl)vl(fl) = S 1 (FVA(f1)
. ‘/2m2+1(f ) VmN+1(f1)
- M;, (f1) - M, (f1).

Koska f; on transkendenttinen, Lemmasta 7 seuraa,
etta

= S, ViVt V ~t M.

_LPVI M, -
ma

Jaoton polynomi V; on selvésti vasemman puolen teki-
jé. Ainoa tapa, jolla Vi voi jakaa oikean puolen, on ettd
V1 jakaa polynomin V;. Koska polynomin V; korkeim-
man asteen termin kerroin on 1, Lemman 27 nojalla
saadaan, ettd V7 on itse asiassa monomi ja valttaméatta
monomi X.

Jos sama prosessi tehdddn muille polynomeille V;, ja
koska V; # Vi, huomaamme, ettei V; esiinny yh-
talossd (12). Samanlaisella tavalla voi paitelld, ettd
M; = X, eivatkd muut polynomit M; esiinny. Lopuksi
Lauseesta 9 seuraa, ettd deg S,1 < degV; = 1 jokaisel-

la ke {1,...,mq}, joten Sk1 = Sk1(f1) = ok jollakin
o € K. Yhtalostd (12) tulee sitten

> u ] Louti

OZ:Z e;— +e1=— +Sof1 +Z Z :_&
i W h fl k=1 J1
N / /
u o, —kbo ~
L SO U o Sl LAY
' i k=1 fi

s
Il
_

Jos yksikin termeisté o}, —kb'oy, olisi epénolla, niin ker-
tomalla molemmat puolet alkiolla fi™' saisimme epé-
nollan polynomin, jolle f; on juuri. TA&mé on ristiriita,
koska f; on transkendenttinen, joten kaikki nuo termit
ovat nollia ja

OZ_ZQZ +€1b +So(f1)

’L

Polynomin §0 médritelméstéd ja Lemmasta 26 seuraa,
ettd deg(Sp) = 0, eli Sy = So(f1) = so € K. Voi siis

kirjoittaa
eyt

ja méadrittelemalld v := e1b + sp saamme yhtélon (1).

+ e1b’ + sp,

Jos f; on logaritmifunktio

Tehtava 28. Tee todistus itse seuraten suunnilleen sa-
maa strategiaa kuin eksponenttifunktion tapauksessa.

Vihje: Lemmat 25, 26 ja 27 pitid muokata. Esimerkiksi
uust polynomi P on

m—1
P(X):=a, X"+ Z (a; + (i + 1)ai+1%)Xi.
=0

Huomaa, ettd
e jos am on vakio, niin deg(P) < deg(P),

e jos an, ei ole vakio, niin deg(P) = deg(P).

Implikaation ”=" todistuksen jatko: jos
f1 on algebrallinen

Aloitetaan taas yhtélosta (8) eli
n "
a= Z di# + ',
i=1

missé t1,...,tn,w € K(f1). Koska nyt oletetaan, et-
td f1 on algebrallinen, on olemassa sellaiset polynomit
Pr,... P, Q € K[X], ettd t; = Pi(f1) ja w = Q(f1)
jokaisella i € {1,...,n}. Koska K(f1) on kunta, on ole-
massa polynomit Ry, ..., R, € K[X] niin, etta

1
i = R (13)
Yhtélosta (8) tulee
a =" di(Pi(f1))Ri(f1) + (Q(f1))" (14)

Olkoon M € K[X] alkion f; minimipolynomi kunnan
K suhteen, ja olkoon m := deg(M). Lemman 15 avulla
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polynomilla M on m pareittan erillistd meromorfista
juurta z1,...,2m, ja yksi niistd on f;. Jollekin sopival-
le polynomille 7 € K[X, Y] yhtdlon (14) oikea puoli on
yhtéd kuin T (f1, f1). Koska z1,. .., 2, ovat saman jaot-
toman polynomin juuret, voimme kéyttaa Lausetta 24
saaden

0 = D i) Rl + (@)

jokaisella k € {1,...,m}. Jos otetaan summa kaikkien
indeksien k € {1,...,m} suhteen, saamme
ma =3 (S a (R R + @) )
k=1 \i=1
Tésta ja yhtdlostd (13) seuraa, ettd
= — dzi - .
a m;; Pi(2r) +m ;Q(zk)

Sovelletaan yhtélod (2) ensimméisessd termisséd esiin-
tyvadn summaan saaden

1<~ (Pi(21)Pi(20) - Pi(2))
a= 7Zdi( (1) Pi(z2) (2m))
m < Pi(z1)Pi(z2) - Pi(zm)
1 m !
+ m(}pw) .
k=1
Jokaisella ¢ € {1,...,n} maaritelladn polynomi

renkaassa K[X1,..., X,,]. Polynomi S; on symmetri-
nen, joten siihen voidaan soveltaa Lausetta 21, kun
madaritelldan

Uy = Si(Zh .. .,Zm) = Pz(Zl) . ~-Pi(Zm),

jolloin saadaan, ettd w; on kunnan K alkio. Samalla
tavalla voimme ottaa toisen symmetrisen polynomin

m
S(X1, ce 7X77L) = ZQ(Xk)v
k=1
jolloin v := £8(z1,...,2;) = = > /", Q(2) on kun-

nan K alkio. Eli voimme kirjoittaa

n
T
a:—g di— + v,
m 4 U
=1

ja saamme yhtalon (1), kun médritellaan ¢; := d;/m.

Seurauksen todistus

Todistetaan lopuksi artikkelin ensimmaéaisen osan
Lause 30 eli seuraava lause.

Lause 29. Olkoot f,g € C(x), missi f ei ole nolla
etkd g ole vakio, mddritellyt jossakin reaalivilissd J.
Talloin funktiolla

J —C,

z— f(z)ed™

on alkeisintegraalifunktio, jos ja vain jos on olemassa
sellainen rationaalifunktio a € C(x), ettd

f=d+ag. (15)

Todistus. (<) Oletetaan, ettd jokin rationaalifunktio
a € C(x) toteuttaa f = a’ + ag’. Maaritellddn

h(z) = a(x)ed™, K := C(x).

Koska €9 on eksponenttifunktio kunnan K suhteen,
K(e9) on kunnan C(z) alkeislaajennus. Joten h, joka
on tdmén laajennuksen alkio, on alkeisfunktio. Lopuksi
otetaan derivaatta:

h' =ad'e? +ag'ed = (a' +ag')e? = fel.

(=) Olkoot f epénolla ja g epavakio. Olkoon L kunnan
C(x) sellainen alkeislaajennus, johon kuuluu funktion
fe9 integraalifunktio y. Silloin kuntaan I kuuluu myos
y' = fe9 sekd e9, joten L on kunnan C(z)(e?) alkeis-
laajennus. Olkoon
a:= fed, K := C(x)(e9).

Liouvillen lauseen mukaan on olemassa sellaiset
t1,....th,w € Kjad,...,d, € C, ettéd

n t/
— 1 /
a= Zdlti +w'.
i=1

Tamén voi kirjoittaa eri tavalla Lauseen 9 nojalla, ja
niin kuin Liouvillen lauseen todistuksessa saamme yh-
talon

e R s o
N omi N ms

~ (Ski(f1)) < Ska(f)(Vi(fr))

IR PRI D S P

Lauseen 8 mukaan, e9 on transkendenttinen kunnan
C(z) suhteen, joten voimme kiyttdd samaa strategiaa
kuin Liouvillen lauseen todistuksen osassa, joka koskee
transkendenttisia eksponenttifunktioita. Liséaksi kirjoi-
tetaan « eli fed renkaan C(z)[X] jonakin polynomina
pistessa e9, eli

a = fed = P(e9), P(X):=fX.

Samalla tavalla kuin yll4 mainitussa todistuksen osassa
yhtélosta (16) tulee

N /

P(e9) = Zcz% + (So(e9)) + 14’

i=1 ¢

(17)
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Koska vasemmalla puolella oleva polynomi on ensim-
méisté astetta, niin pitdd myodskin olla polynomin Sj.
Ja transkendenttisen eksponenttifunktion tapauksen
huomausten mukaan patee myds deg(Sy) = 1, joten

So(X) = 51X + 50

joillakin sopivilla s, s9 € C(z). Niinpa yhtélosta (17)
tulee

N
u

fef=> cim -+ (s1e? + so)' +e1g’
i=1 "

N

3 / ! ! !

= E ciu—z—ksleg—&-slgeg—l—so—i—elg.
i=1 v

Kirjoittamalla eri tavalla saamme
N o
l N,9 i / /
— 51— 819 )ed = i—
(f =81 —s19") Zczui+so+elg,
=1
missd oikea puoli ei sisdlld funktiota e9. Jos funk-
tion e9 kerroin vasemmalla puolella olisi epanolla, sai-
simme ristiriidan transkendentisuuden kanssa, joten
f—s1—s19 =0¢li
f=s]+s9.
Koska s; € C(z), saamme halutun yhtélon (15). O

Viimeisia kommenteja

Niin kuin sanottu ensimmaéisessa osassa on tama kirjoi-
tus artikkelin [1] inspiroima, paitsi ettd tdssi teemme

kaiken tavallisen derivaatan ”perus”tapauksessa. Peri-
aatteessa on mahdollista analysoida miké vaan deri-
vaatta seuraavan madritelmén mukaan.

jossa mdaritellidn sellainen funktio D: K — K, jota
kutsutaan derivaataksi, ettd jokaisilla alkioilla a,b €
K pdtee

D(a+b)=D(a)+D() ja D(ab) = D(a)b+aD(b).

Esimerkiksi tavallinen derivaatta on derivaatta edelli-
sen madritelmdn mukaan. Jos D on derivaatta, niin
on —D myo6skin. Tamén kirjoituksen tulokset pitéavét
paikkansa yleisemmassa tapauksessa, ettd kyseessd on
yleinen derivaatta. Matematiikan osa-alue, joka késit-
telee téllaisia kéasitteitd ja tuloksia on differentiaalial-
gebra (engl. differential algebra).

Viitteet

[1] C. De Lellis. Il teorema di Liouville ovvero perché
“non esiste” la primitiva di ¢*” . La Matematica nel-
la Societa e nella Cultura. Rivista dell’Unione Ma-
tematica Italiana 7.1 (2014): 55-97.

[2] J. Hésd, J. Ramo. Johdatus abstraktiin algebraan.
Gaudeamus (2015).

[3] M. Orlich. Miksei funktiota e~
(Osa 1/2). Solmu 2/2025.

voi integroida?
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Topologiasta ja matematiikan soveltamisesta

Marjatta Nddtanen

Matematiikka on menetelmétiede, joka on aina ollut
vuorovaikutuksessa luonnontieteiden ja tekniikan kans-
sa. Néiden alojen ongelmat ovat johtaneet uusien mate-
maattisten teorioiden luomiseen, ja toisaalta hyvinkin
abstrakteille matemaattisille teorioille on, usein mydo-
hemmin ja ylldttaenkin, ilmaantunut sovelluksia. Mo-
derni, tekniikkaa laajasti kdyttava yhteiskuntamme pe-
rustuu matematiikalle — joka ei ole luonnontieteiden
ja tekniikan kaavakokoelma, vaan koko ajan kehittyva,
itsendinen tiede. Nykymatematiikan laaja-alaisuuden
vuoksi yliopisto-opetus perustutkintovaiheessa tyytyy-
kin tarjoamaan matemaattisen pohjan, jolta voi jatkaa.

Monien matemaatikkojen mielestd matematiikkaa tu-
lisi opettaa koulutasolla tuomalla esiin sen kauneus
ja sen tarjoamien &lyllisten haasteiden mielihyva. Tér-
keintd on kuitenkin oikean pééttelytavan oppiminen —
tatdhan tarvittaisiin yhteiskunnan kaikilla aloilla, po-
litiikasta alkaen, ongelmien kunnolliseen analysointiin.
Matematiikan opiskelu edesauttaa selkeén, jarkevén ja
luotettavan ajattelutavan kehittymista. Kuten lihaksia,
on aivojakin harjoitettava. "Use it or lose it” pétee tés-
sékin.

Matematiikkadiplomin X tehtivissi! padset kurkista-
maan muutamiin sellaisiin matematiikan aloihin, ku-
ten lukuteoria, solmuteoria, kombinatoriikka, topolo-
gia, joihin koulukursseillasi tuskin tormaét.

Esimerkiksi topologiasta tarjottavat tehtévit ovat as-
kartelua. Toivottavasti ne herattdvéit kiinnostusta ja
poistavat valitettavan yleistd késitysté, ettd matema-

tiikka on ldhinné luvuilla laskemista. Matematiikan yh-
tendisyys tulee myos esille tehtévissé, joissa eri alat kie-
toutuvat toisiinsa ja ratkaisutavat voivat olla monen-
laisia.

Kiinnostuneille on reittejé jatkoon Solmunkin tiedosto-
jen avulla. Yksi esimerkki topologian kaytosta 10ytyy
Solmusta 1/20252, suomeksi yliopistotason oppikirjoja
on kirjoittanut mm. Jussi Vaisala.

Hyvin abstraktin teorian kayttomahdollisuuksia on
tutkinut prof. Eero Hyry, joka kuvailee seuraavassa ly-
hyesti tutkimustaan:

Téssé lyhyt yleistajuinen kuvaus topologisesta data-
analyysisté.

Big datan kasvava merkitys edellyttdd myos uusia ma-
temaattisia menetelmia sen kasittelemiseksi. Topologi-
nen data-analyysi on suhteellisen uusi matematiikan
osa-alue, joka hyodyntda algebrallista topologiaa datan
muodon tutkimiseen ja analysointiin. Topologia tut-
kii muotoja ilman tarkkoja mittauksia. Homologia on
algebrallisen topologian tytkalu, jonka avulla voidaan
loytad datasta yhtendisia komponentteja, reikié, onka-
loita ja nédiden korkeampiulotteisia vastineita.

Topologinen data-analyysi on yllattava kdytdnnon so-
vellus algebralliselle topologialle, jota pidettiin ai-
kaisemmin téysin teoreettisena matematiikan osa-
alueena. Se soveltuu erityisesti korkeampiulotteisen ja
ei-lineaarisen datan tutkimiseen, ja pystyy néin usein

Ihttps://matematiikkalehtisolmu.fi/2008/diplomi/diplomitehtavat10.pdf
2https://matematiikkalehtisolmu.£i/2025/1/talutushihna.pdf
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havaitsemaan piirteitd, jotka jadvat perinteisiltd ti-
lastollisilta menetelmiltd piiloon. Topologisen data-
analyysin avulla voidaan dataa tutkia eri mittakaavois-
sa. Mittakaavan muuttuessa datan todelliset ominai-
suudet erottuvat kohinasta.

Tama aihe on todellakin kiinnostanut tiedetoimittajia.
Esimerkkeiné

Precision Problem Solving: Topological Data Analysis
Driving Advances in Medicine and Biology | Depart-
ment of Mathematics

The Mathematical Shape of Things to Come | Quanta

Magazine
Ayasdi Analyzes Shape Of Big Data | InformationWeek

How Mathematicians Use Homology to Make Sense of
Topology | Quanta Magazine

Prof. Hyry on tyoskennellyt vain topologisen data-
analyysin teorian parissa. Mutta Tampereella 2021
véitellyt Henri Riihimiki, joka kirjoitti véitoskirjan
KTH:ssa ja sen jilkeen toiminut tutkijana Tukholmas-
sa ja Aberdeenissa, on soveltanut sitd biologisiin neu-
roverkkoihin.
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Rahapeliongelma

Jukka Liukkonen
Mat. yo. evp.

Pythonin kanssa peliongelman kimp-
puun

Professori Daniel Litt tutkii leipatyondén algebrallis-
ta geometriaa Toronton yliopistossa. Han kertoo 16y-
tdneensd hyodyllisid vélineitd toiselta matematiikan
osa-alueelta, lukuteoriasta. Vapaa-aikaansa Litt viet-
tad kolmannen matematiikan osa-alueen, todennakoi-
syyslaskennan parissa. Han keksii huvikseen todenné-
koisyysprobleemoita, jotka johtavat ihmisen intuition
helposti harhaan. Téassé on yksi Littin probleemoista:

Kolikkoa heitetadn sata kertaa. Alice saa pisteen aina,
kun kaksi kruunaa tulee perikkdin. Bob saa pisteen ai-
na, kun kruunaa seuraa klaava. Eniten pisteitd kerdn-
nyt pelaaja voittaa pelin. Kumpi on todenndkdisempi
voittaja?

Siis hetkinen: kaikki neljd mahdollista kruunan ja klaa-
van jarjestettyd paria ovat yhtd todennékéisid, joten
Alice ja Bob saavat sadan heittokerran pelissd kumpi-
kin keskimédrin saman maardn pisteitd, ja tuo méara
on 99/4 = 24,75, silld sadan kolikon jonossa on vain 99
kolikkovalid ja saman verran kahden perdkkéisen koli-
kon muodostamia pareja. Tallinhdn Alice on yhté to-
denndkdinen voittaja kuin Bob? Varmistetaanpa asia
kirjoittamalla pieni kolikonheittoa simuloiva Python-
ohjelma.

No, Python-ohjelma kirjoitettiin, mutta siind vaikut-
ti olevan jokin bugi, silli onnetar suosi sddnnollises-
ti Bobia, jolla voiton todennékoisyys oli aina kolmisen
prosenttiyksikkod suurempi kuin Alicella. Bugia ei sit-

keisté etsinnoéistd huolimatta loydetty. Herdsi epéilys,
ettd vika on jossain muualla, esimerkiksi aritmeettis-
loogisessa yksikossd otsaluun takana. Hoksattiin tut-
kia miten kay, jos heittosarja on paljon lyhyempi, vaik-
kapa neljd heittoa? Oheisesta puukaaviosta, jossa H
tarkoittaa kruunaa (heads) ja T tarkoittaa klaavaa
(tails), nahdaéan huolellisesti katsomalla, ettéd neljan ko-
likonheiton tapauksessa kaikista mahdollisista 16 pe-
listd Alice voittaa nelja ja Bob kuusi. Jiljelle jadvit
kuusi ovat tasapeleja. Python-ohjelma taisi olla kun-
nossa alun alkaenkin.

/H\

H —
H/ T<
~ /H<
oo Tz =
H —
_— H =—
\T/H\T<
\T/H<
\T<
_— H —

H —_
H T =
~ _— H —
oo Tz =
T —
_— H =

AN H
T T =
\T/H<
\Ti
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Peli ja peliavaruus

Kolikonheiton tulosjonoa mallinnetaan yhtd pitkalla
kirjainten H ja T muodostamalla jonolla. Alice saa
pisteen jokaisesta HH -esiintyméstd ja Bob jokaisesta
HT -esiintymésta. Esimerkiksi kirjainjono HTTHHTH
vastaa erdstéd seitsemén kolikonheiton tulosjonoa. Siita
tulee Alicelle yksi piste ja Bobille kaksi. Taydellisyy-
den vuoksi otetaan mukaan myos pelaajat Cheryl, joka
saa pisteen jokaisesta TH -esiintymaésté, ja Dustin, jo-
ka saa pisteen jokaisesta TT -esiintymaésta. Yleisyytta
tavoitellen sovitaan, ettd kolikkoa heitetdan n kertaa.
T&ll6in puhutaan n -pelistd. Kaikkien mahdollisten n-
pelien joukkoa kutsutaan n-peliavaruudeksi. Pelaa-
jien nimet lyhennetdin muotoon A, B, C ja D. Toi-
sesta heittokerrasta alkaen joku nelikosta saa pisteen
jokaisella heittokerralla.

Oheinen suunnattu verkko esittdé pelin kulkua sen jal-
keen, kun kolikkoa on heitetty kaksi kertaa. Verkon sol-
mujen nimet A, B, C ja D kertovat, kuka saa pisteen
kyseiseen solmuun tultaessa. Kaaret tai nuolet

AA, AB, BC, BD, CA, CB, DC, DD

vastaavat siirtymié pelitilanteesta seuraavaan kolikon-
heiton myo6ta. Esimerkiksi tulosjonoa

HHTTHTTT
vastaa pelitilanne

ABDCBDD,

jossa Alicella ja Cherylilld on yksi piste kummallakin,
Bobilla on kaksi pistettd ja Dustinilla kolme pistetté.
Tulosjonot ja pelitilanteet vastaavat toisiaan kdantéden
yksikésitteisesti. Huomaa, ettéa kaikki kirjaimista A, B,
C ja D muodostetut jonot eiviat edusta pelitilannet-
ta: esimerkiksi AC ei voi toteutua. Vain verkkokaavion
mukaiset jonot ovat pelitilanteita.

Kun verkon solmut kootaan matriisiksi

A B
o=[e 5]

kaikki kaaret saadaan neliosta

o _[A B]°_[AA+BC AB+BD
| Cc D] T|CA+DC CB+DD |’

mutta mika parasta, kaikki n kolikonheittoa vastaa-
vat n — 1 kaaren reitit saadaan matriisipotenssista
G" 1. Lukija voi tulla vakuuttuneeksi tisté laskemalla
potenssin G? ja vertaamalla sitd verkkokaavioon. On
tarkedd huomata, ettd toistaiseksi matriisialkiot ovat
vain symboleja, joille tulon vaihdantalaki ei ole voi-
massa, joten laskutoimituksissa kannattaa olla huolelli-
nen. Symbolien tai symbolijonojen tulo tarkoittaa vain
niiden asettamista perdkkéin. Plusmerkki symbolijono-
jen vilissd toimii erottimena, jolla kaksi jonoa erote-
taan toisistaan. Téllainen “yhteenlasku” on vaihdan-
nainen. Matriiseilla laskemisen sddnnot voidaan tarvit-
taessa opiskella Wikipedian sivulta [6].

Huomautus. Merkkijonoilla laskeminen ei valttamat-
td ole epamadriistd puuhastelua. Siitd tulee aivan oi-
keaa matematiikkaa, kun otetaan kiyttoon vapaan al-
gebran késite (ks. [4]). Nyt on kysymys aakkostos-
ta {A,B,C,D} muodostettujen merkkijonojen viritta-
maéstd vapaasta Z-algebrasta.

Pelitilanteesta pistetilanteeseen

Pistelaskentaan padstdan kasiksi korvaamalla vaihdan-
talakia noudattamattomat symbolit A, B, C ja D vaih-
dantalakia noudattavilla symboleilla a, b, ¢ ja d mai-
nitussa jarjestyksessd. Esimerkiksi Bobin pisteet peliti-
lanteessa ABDCBDD saadaan muodostamalla vastaa-
va, pistetilannetermi ab®cd® ja katsomalla symbolin b
eksponentti: sehdn on kaksi. Siirtymalla pelitilanteista
pistetilanteisiin menetetaén tieto siitéd, missa jarjestyk-
sessé pisteet ovat kullekin kertyneet. Pelimatriisin G
tilalle astuu talloin pistematriisi

s-[23]

Kaikkien mahdollisten 3-pelien pistetilanteet ndhdéan
matriisista

g2 _ a?+bc ab+bd
| ac+cd be+d?

Matriisialkioiden summasta
17821 = a® + be + ab + bd + ac + cd + be + d?,

misséa
1
1_{1}, 1"=[1 1],

havaitaan Alicen saavan yhdestd pelistd keskiméérin
(24+0+14+04+1+0+0+40)/8 = 1/2 pistettd, ja Bobin
vastaava keskiarvoon (0+1+14+1+0+0+1+0)/8 =
1/2. Keskiarvojen yhtdsuuruus ei ole yllatys. Ensim-
maéisen kappaleen lukemisen jélkeen ei endd yllaté se-
kéadn, ettd Alice voittaa Bobin kahdessa pelissd, kun

sisallysluetteloon



Solmu 3/2025

sisallysluetteloon 21

taas Bob voittaa Alicen kolmessa pelissd. Miten kay,
kun kolikkoa heitetddn kolmen heiton sijaan sata ker-
taa? Tulosjonoja on aika monta. Niiden lukumééré on
31-numeroinen kokonaisluku.

Huomautus. Siirtyminen pelitilanteista pistetilantei-
siin merkitsee siirtymisté vapaasta Z-algebrasta vastaa-
vaan polynomialgebraan Z[a, b, ¢, d] (ks. [7]).

Fokus Aliceen ja Bobiin

Kuten lukija varmaan jo huomasi, parivaljakoiden
(Alice, Bob) ja (Dustin, Cheryl) kesken vallitsee sym-
metria; toisin sanoen, kun verkkokaaviossa A ja D, B
ja C sekd H ja T vaihdetaan keskenéddn, kaavion infor-
maatiosisiltd ei muutu lainkaan. Sama vaikutus, siis ei
vaikutusta ollenkaan, saadaan aikaan kiertdmalla kaa-
viota 180°.

Kun ollaan kiinnostuneita pelkdstddn Alicen ja Bobin
keskindisesta taistosta, pistetilannetermeissé c ja d kor-
vataan ykkosilla. Silloin

| a b o [ a*+b ab+b
S_{l 1]’ S_[a+1 b+1 |’

ja kahden muuttujan a ja b pistetilannepolynomi saa
muodon

17821 = a?+b+ab+b+a+1+b+1 = a®+ab+a+3b+2.

Tasté riisutustakin versiosta ndhddan Alicen ja Bobin
pisteet sekd heidan kaksintaistelussa voittamiensa pe-
lien maarat.

Huomautus. Kun ¢ ja d korvataan ykkosilla, polyno-
mialgebra Z[a, b, ¢, d] samalla projisoidaan alialgebraksi
Z]a, b].

Fokus voitettujen pelien lukuméaraan

Jos kiinnostuksen kohteena on pelkéstadn artikkelin
alussa mainittu kysymys siitd, kumpi on todennékoinen
voittaja, Alice vai Bob, pistetilannetermejé modifioi-
daan edelleen sopimalla, ettd ab = 1, jolloin tasapelit
redusoituvat ykkosiksi. Esimerkiksi peliin ABDCBDD
liittyvé pistetilannetermi ab?cd®, joka on jo degene-
roitunut muotoon ab?, pelkistyy sopimuksen jilkeen
pelkiaksi alkioksi b. Téasta ndhdééan, ettd Bob voittaa
Alicen yhdella pisteelld kyseisessé pelissi. Polynomi
18?1 =a*+ab+a+3b+2
=a’+1+a+3b+2
=a*+a+3b+3
kertoo meille, ettd kolmesta kolikonheitosta voi syntyé
kaikkiaan 8 = 12 +1+3-1+43 = 23 (sijoitaa = b = 1)
erilaista pelid. Niisté Alice voittaa yhden kahdella pis-

teelld (a?) ja yhden yhdell pisteelld (a), kun Bob puo-
lestaan voittaa kolme pelid yhdelld pisteelld (3b). Alicen

ja Bobin keskinéisessd kisassa tasapelejd on kolme (3).
Degeneroitunutkin polynomi on tédten sangen informa-
tiivinen.

Huomautus. Sopimus ab = 1 merkitsee, ettd polyno-
mialgebra Za, b] ensin projisoidaan polynomialgebrak-
si Z[a] ja sen jilkeen lokalisoidaan Laurentin polyno-
mialgebraksi Z[a,a™1] (ks. [5]).

Heittojen lukumaira n + 1

Polynomi 17 8"1 monimutkaistuu vauhdikkaasti, kun
n kasvaa. Sen aste kasvaa lineaarisesti, mutta kertoi-
met eksponentiaalisesti, minké todistaminen jatetdan
lukijalle. Esimerkiksi

1781 = a® + @ + 2a* + 8a® + 124°
+ 18a 4 30 + 32b + 19b% + 5b°.
Téassd termit on kirjoitettu alkion a alenevien potens-
sien mukaan, kun otetaan huomioon sopimus eli yhtéa-
16 ab = 1, jonka mukaan b = a~! on alkion a kdin-
teisalkio. Matriisipotenssien laskemista on mahdollista
helpottaa diagonalisoimalla. Menetelmédn tarkemmin
puuttumatta todetaan, ettd matriisi S voidaan esittédé

hajotelmana
S =PAP !,

missd P! on matriisin P kéénteismatriisi, so.
1 0
-1 _ p-1p _ _
PP =P 'P=1, I_[O 1],

ja A on lavistdjamatriisi eli muotoa
A0
0 X |~

S" = PA"P !,

Silloin on voimassa

ja keskimméinen matriisipotenssi on helppoa laskea,
silla
AP0
n __ 1
Sk
Lukija voi verifioida ndmé kaksi yhtal6a harjoitusteh-
tavanid. Osoittautuu, ettd hajotelma S = PAP™! to-

teutuu, kun lavistajaalkioina ovat

)\1=%<a+1+\/m),

/\2:%(&4-1— (a—1)2+ b),

ja kerroinmatriisit ovat esimerkiksi

M-l A1
pe[M

plo_ 1 [

11—
A — Ao '

-1 X -1
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Tédménkin toteen ndyttdminen normaaliin tapaan las-
kemalla jétetdén lukijalle harjoitustehtévéksi.

Huomautus. Symbolien a ja b olemuksesta tiedetdéan
vain, ettd ab = 1. Ei ole tarkoituksenmukaista esitel-
14 uusia algebrallisia struktuureja aikaisemmissa huo-
mautuksissa esiteltyjen lisdksi, joten edelld mainittu-
jen neligjuurten olemus ja olemassaolo jadvat hama-
rén peittoon. Kun tavoitteena on matriisitulon 17871
esittdminen kokonaislukukertoimisena polynomina, ja
nelijuuret lopulta supistuvat lausekkeista pois, téllai-
nen formaali eli muodollinen kaavojen pyorittely nah-
takoon pelkastadn keinona padsté lopputulokseen. Me-
nettely voidaan hyvaksyé ainakin silloin, kun lopputu-
loksen péatevyys on mahdollista verifioida laillisin kei-
noin. Monesti jonkin lausekkeen keksiminen on hyvin
vaikeaa, mutta kun lauseke lopulta tavalla tai toisella
keksitddn, sen todistaminen péteviksi esimerkiksi in-
duktiolla on hyvin yksinkertaista. Sita paitsi: eikds jo-
ku ole joskus sanonut, ettd “tarkoitus pyhittdd keinot”.

Yleiseen (n+ 1)-peliin liittyvan tehtdvin ratkaisun vai-
keus piilee siind, ettd potenssien A} ja Ay ja lopulta
polynomin 17871 laskeminen johtaa monimutkaisiin
lausekkeisiin. Kun kyseinen polynomi on jollain keinol-
la saatu laskettua, se voidaan esittda kanonisessa muo-
dossa

I J
p(a,b) = Z oiat + v+ Zﬂjbj.
i=1 j=1
Tasapelien lukumééara on

p(o, 0) =1.

Alicen ja Bobin voittamien pelien lukuméérét ovat vas-
taavasti

I J
p(1,0) =y => a; ja p(0,1) —y=>_B;.
i=1 j=1

Huomautus. Nollan sijoittaminen muuttujan a tai b
paikalle saattaa tuntua oudolta, kun muistetaan sopi-
mus ab = 1. Idea on siiné, ettd tuota sopimusta kéy-
tetddn saatettaessa polynomin lauseketta edelld esitet-
tyyn kanoniseen muotoon. Témén jalkeen on enéa ky-
symys polynomin kertoimista ja niiden summista. Jos
ne saadaan selville sijoittamalla nolla muuttujan pai-
kalle, télle polynomin syntyhistoriaan ndhden laitto-
malle sijoitukselle ei ole mitdédn estettd. Kun kanoni-
sointiin liittyvét laskut ovat vield kesken, nollan sijoit-
taminen muuttujan paikalle johtaa védaradn lopputu-
lokseen. Esimerkiksi jos yhtéloketjun

(a+b)? =a* +2ab+b* = a® +2 + b

ensimmadiseen yhtdloon sijoitetaan a = b = 0 vakio-
termin paljastamiseksi, saadaan viara tulos 0. Sijoitus
sopii tehdd vasta loppuun asti laskettuun kanoniseen
muotoon. Silloin saadaan oikea tulos 2.

Erds keino mutkikkaiden lausekkeiden hallitsemiseksi
on kiyttdd laskentaan jotakin symbolisen laskennan
ohjelmistoa. Néin on tehty mm. artikkelissa [1], vaik-
kakin eri ldhtokohdista kuin edelld esitetty. Symboli-
sen laskennan lisdksi todistusvoimaa saadaan komplek-
sianalyysista kuten artikkelissa [3]. Itse asiassa poly-
nomi p(a,b) voidaan kirjoittaa vastaavaksi kompleksi-
muuttujan z Laurentin sarjaksi

I J
L(z) = Z izt oy + Z Bz,
i=1 j=1

joka téssé tapauksessa, kun termejéd on vain darellinen
maéaéré, on pelkkd Laurentin polynomi. Jos funktion L
lauseketta ei tunneta sarjamuodossa, sarjan tuntemat-
tomat kertoimet saadaan joskus selville kompleksista
integrointia kédyttden. Vaikka se ei onnistuisikaan, in-
tegraalit saattavat kuitenkin kertoa jotain oleellista in-
formaatiota kertoimista.

Tuloksia

Vaikka kolikonheittoprobleema johtaa pitkiin laskui-
hin, sitd on hyvin helppoa tutkia kokeellisesti. Sadan
heiton kisaa Alicen ja Bobin vélilld simuloitiin t&té ar-
tikkelia varten yksinkertaisella Python-ohjelmalla, joka
kaytti heittotulosten arpomiseen satunnaislukugene-
raattoria. Kymmenestamiljoonasta pelistd Alice voit-
ti 4574682, Bob voitti 4859895, ja tasapeleja tuli
565 423 kappaletta. Taméan kokeen valossa Alice voittaa
pelin noin 45,7 %:m todennakoisyydelld, Bob voittaa
noin 48,6 %:n todennédkoisyydella, ja peli paattyy tasan
noin 5,7 %:n todennékoisyydelld. Artikkelissa [1] las-
ketut teoreettiset arvot ovat vastaavasti 0,4576402592,
0,4858327983 ja 0,0565269425.

Eras kollega laski Mathematica-ohjelmalla polynomin
p(a,b) = 17891 arvot p(1,0), p(0,1) ja p(0,0), kun

a b
s=[11]
ja sai sitd kautta selville, miten monta sta mah-

dollisesta pelistd padtyy Alicen tai Bobin voittoon tai
tasapeliin:

2100.

615866 238418 960 422 359 689 555 420
580127949 239 420 834 381 088 427 404
71656 412 569 848 144 755 925 222 552

‘ 1267650 600 228 229 401 496 703 205 376

Bob voittaa
Alice voittaa
Tasapeli
Yhteensa

Artikkelissa [3] todistetaan, ettd Bob voittaa n-pelin
todennédkoéisemmin kuin Alice, kun n > 3. Toisin sa-
noen Bob voittaa suuremman osan n-peliavaruuden
peleistd kuin Alice, kun n > 3. Artikkelissa todis-
tetaan myos, ettd kumpikin todennédkoisyys lahestyy
raja-arvonaan lukua 1/2, kun n kasvaa rajatta, ja to-
dennékoisyyksien erotus

P({Bob voittaa}) — P({Alice voittaa})
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vielapé kayttdytyy asymptoottisesti kuin

2\}% +0 (n*?’/z) .

Pohdintaa

Alicelle pisteen tuovia pareja HH on tasan yhtd mon-
ta kuin Bobille pisteen tuovia pareja HT, kun kaikki
n-pelit otetaan mukaan laskentaan. Siksi on ehké yl-
lattavad, ettd Bob kuitenkin voittaa suuremman osan
yksittéisistd n-peleista kuin Alice. Koska tarkastelu ké-
sittédd koko peliavaruuden, mukana ovat myos sellaiset
pelit, joissa Alice saa yli n/2 pistettd. Téllaisiin pelei-
hin siséltyvéit Alicen pisteet ovat poissa muihin peleihin
siséltyvistd Alicen pisteistd. Bobin sen sijaan on mah-
dotonta saada yhdestikédn pelista enempéé kuin n/2
pistetta. Nain ollen Bobin pisteet ovat tasaisemmin ja-
kautuneet n-pelien kesken. Kérjistden voidaan sanoa,
ettd Alice voittaa pienen méaéréan peleja isolla pistemé&a-
rélld, jolloin Bob saa tilaisuuden voittaa suuren méaa-
ran pelejé pienelld pistemaéralld. Téllainen heuristiik-
ka tukee Bobin onnekkuutta, mutta kokonaan toinen
asia on siihen pohjautuvan todistuksen kirjoittaminen,
jos se ylipdansa on mahdollista.

Daniel Litt haluaisi ndhdd Bobin onnekkuudelle todis-
tuksen, jossa intuitio ei peittyisi teknisten yksityiskoh-
tien taakse. Joskus todistukset ovat sellaisia, ettd véite
kylla putkahtaa monimutkaisen pédattelyketjun ja hir-
muisten laskelmien jilkeen ulos, ja kaikki pystyvét ve-
rifioimaan todistuksen pétevéiksi vaihe vaiheelta, mutta
kukaan ei oikeastaan ymmaérra, mita todistuksessa ta-
pahtuu. Littin probleema yleiselle n-pelille on sen luon-
toinen, ettd joku aiheesta kiinnostunut nuori opiskeli-
ja, jolla ei vield ole kokemuksen painolastia harteillaan,
saattaisi onnistua keksimédn omintakeisen ratkaisun,
johon urautuneiden ammattilaisten mielikuvitus ei ole

riittdnyt. Quanta Magazine -verkkolehdessé [2] on pro-
fessori Littin haastattelu.
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Ympyran nelioiminen

Reijo Hautakangas

Tarkastellaan kysymysté siitd, voidaanko piirtda ne-
lio, jonka pinta-ala on sama kuin annetun ympyran
pinta-ala. Nelién sivun pituuden pystyy tietenkin las-
kemaan helposti. Sen sijaan harpilla ja viivaimella t&l-
laista nelioté ei voi piirtaéd, silla esimerkiksi yksikkoym-
pyrdd vastaavan nelion piirtdminen edellyttdisi erdan
transkendenttiluvun mittaisen pituuden konstruoimi-
sen harpilla ja viivaimella. Sen sijaan likiarvoratkaisuja
voi tehdd harpilla ja viivaimella.

Voidaan esimerkiksi 10ytdéd niin tarkka ratkaisu, ettd
kun otetaan huomioon harppiviivainmenetelmén luon-
tainen piirustusepéatarkkuus, niin itse ratkaisumenetel-
man epatarkkuus ei juuri huononna tulosta.

Léahdetdan aluksi ratkaisemaan toista tehtdvaa: Nelion
ympyroiminen. Tamakin on mahdotonta ratkaista tar-
kasti harpilla ja viivaimella, silld tdménkin ratkaise-
minen antaisi transkendenttiluvun mittaisen pituuden
konstruktion. Nelion ja ympyran pinta-alojen yhtasuu-
ruus on tavoitteena téssdkin.

Jaetaan piirretty nelié aluksi kuuteentoista ruutuun.
Ruudun sivun pituus on 1. Kuvaan piirretddn ympyra
nelion keskipisteeseen. Sen siteeksi otetaan /5 kuvan
mukaisesti. Ympyrén ja nelion leikkauspisteiden kaut-
ta kulkevat sidesuorat lisdtddn kuvaan (niiden ja ne-
lion sivujen véliset kulmat méaardaviat ympyran ja ne-
lién pinta-alojen suhteen).

Nelion pinta-ala on

s2=42=16

ruutu = 1

ja ympyran
mr? = n(V5)? =75 =15,70. ..
Pinta-alavirhesuhde on
16/15,70...=1,018...
ja viivavirhesuhde

V/1,018... =1,0092...

Ympyréan side on siis hiukan liian lyhyt (< 1 %).

sisallysluetteloon



Solmu 3/2025 siséllysluetteloon 25

Nyt voidaan ldhted ratkomaan alkuperdistd tehtévaa: nelisn sivu = VTT _fr

ympyran nelidiminen. -

Siirretdan neliéitdva ympyrd samaan keskipisteeseen /’ \ /I N
edellisen tehtédvian ympyréin kanssa. Siddesuorien kanssa yd ™,
syntyy 8 uutta leikkauspistettd, jotka méarittavat piir- ~_ |/ ' \ ,f
rettdvan uuden nelién sivut. Neliditdvin ympyran si- . ' / -
teeksi merkitddn 1 ja uuden nelidn sivuksi ~ /7. Nama / RN /, , \
uudet tekstit ja viivat voidaan piirtdd levedmpina tai f
erivirisiné, jotta ne erottuisivat vanhasta kuviosta.

ympyrdn stde=1 "3/~

Kaytannosséd naiden kuvioiden piirtdminen on huomat- \ ~— ]
tavan yksinkertaista ruutupaperia kéyttéden, mité harp- - - ,r"/ S~ {
piviivainmenetelmé ei kuitenkaan salli. Talloin voitai- T ‘ )

siin kdyttad sadesuorien tangentille tarkempia koko- P \ ) L
naislukujen (ruutujen) osamiiria kuin tuo 1/2, joita | -7 | / \ ST
16ytyykin runsaasti. Esimerkiksi 23/44 on jo turhan- AN '
kin tarkka. Oikea arvo on /(4 — 7)/7 (= 0,52272...), AN _
josta nelién sivujen ja sddesuorien viliseksi kulmaksi - - - —¢
saadaan 27,597 ...°. Téassd ratkaisussa nelién sivu on \
kuitenkin hiukan liian pitkd (< 1 %). / ‘
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Laaja-alainen projektiosaaminen matematiikan opetuksessa

Matematiikkalehti Solmun matematiikkadiplomien tehtdvistd kerattyja tehtiavapaketteja voi
kayttaa laaja-alaisen osaamisen opetuksessa. Eri aihepiireihin liittyvid matematiikan tehtavia
ratkomalla oppilaat huomaavat, ettd matematiikan osaamista tarvitaan monissa eri yhteyksissa.
Matematiikan kumuloituva rakenne vaatii ennen matemaattisten tydkalujen kdyttod aineen
sisdista (eli vertikaalista) eheyttdmistd, vasta tdman jalkeen voidaan pyrkid eri oppiaineiden
viliseen (horisontaaliseen) eheyttimiseen. Tarvittavien matematiikan sisdltéjen on siis oltava
hallinnassa ennen niiden kayttod. Opettajan ratkaistavaksi jda eri oppiaineiden erilainen etene-
mistahti, esimerkiksi kasite mittakaava voi tulla esille maantiedossa eri luokka-asteella kuin
matematiikassa.

Kaytettavissa on 10 tehtdvapakettia. Alla annetaan neljastd paketista esimerkkeja niiden sisal-
16istd. Tehtavat voi tulostaa Matematiikkalehti Solmun (matematiikkalehtisolmu.fi) Matematiik-
kadiplomi-sivulta ja pyytaa vastaukset osoitteesta juha.ruokolainen(at)yahoo.com

Koululle ei aiheudu muita kuin mahdollisia monistus/tulostuskustannuksia.

Tehtdvdipaketit
Peruskoulua, ehkd osittain myds lukiota, varten koottujen tehtdvipakettien aiheet ovat:

- Maapallo (Sisalt6ja: maapallo, etdisyyksia luonnossa ja kartalla, tasokartta, ihminen Au-
ringon ja vetyatomin vilissd. Matemaattisia sisdltdjad: suuruussuhteet, mittakaa-
va, etdisyydet, myos pallolla, maapallon py6riminen, projektio, suuret luvut.)

— Suomen historia (Sisdlt6ja: vakiluvun kehitys keskiajalta, kaupungit, kansakoulu, tytot
ja pojat opetuksessa, taiteilijoita, radioaktiivinen hajoaminen, Pisa-tulokset. Matemaat-
tisia sisdlt6ja: ajan yksikot, prosenttilaskenta ja prosenttipisteet, kaavioiden laatiminen
ja tulkitseminen, lineaarinen approksimaatio, murtoluvut, paittely.)

— Terveys ja ravinto (Matemaattisia ym. sisdltdja: suhteet, prosentit, perusaineenvaih-
dunta, liikkuminen, painoindeksi, energian tarve, kalorit, ajankaytto, ladkeannostus, al-
koholi ja hormonit)

— Talous (Sisaltoja: kauppa- ja hinnanalennuslaskuja, remonttikustannuslaskuja, brutto-
ja nettopalkka, verotus, korot, porssi, valtion budjetti, luonnonvarojen tuottavuus eri
EU-maissa)

- Todennikdbisyys

- Matematiikka ja taide (2 tasoa)

- Mittaaminen (2 tasoa)

- Koodauksen (tai ohjelmoinnin) pohjustus, jossa on eri vaihtoehtoja tutkivia tehtavia.

Alaluokille sopivia tehtdvid on kolmen viimeisen aiheen paketeissa.
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