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Matematiikan kertauskurssit ja osaaminen
yliopisto-opintojen alussa

Pääkirjoitus

Matematiikan osaamisesta on puhuttu paljon eri yh-
teyksissä. Yliopistoilla on erityisesti huomattu tarve lu-
kiomatematiikan kertauskursseille. Tällaisia ovatkin eri
yliopistot kehittäneet hiukan eri lähtökohdista ja hiu-
kan eri kohderyhmille. On nimittäin melko eri tilanne,
pitääkö varmistaa, että jokainen pitkän matematiikan
kurssi on riittävän hyvin hallussa, jotta ensimmäisen
vuoden matematiikan opinnot sujuvat, vai onko var-
mistettava se, että matematiikkaa lähinnä menetelmä-
nä opiskelevalla ihmisellä on riittävä hallinta lukioma-
tematiikan perusteista.

Kertauskursseihin liittyy periaatteellinen dilemma: voi-
daanko yliopistossa antaa opintopisteitä kurssista, joka
ei sisällä sen erityisempää yliopistosisältöä, vaan jossa
vain kerrataan jo toivottavasti aiemmin opiskeltuja si-
sältöjä? Jos voidaan, niin mihin kokonaisuuteen tällai-
set opintopisteet voidaan hyväksyä?

Toinen puoli tietenkin on pohdinta siitä, että ei myös-
kään ole hyvä, jos ihmiset tulevat kursseille vajavaisel-
la osaamisella. He eivät todennäköisesti saa niin paljon
kursseista irti kuin pitäisi, eikä tilanne välttämättä ole
hyvä muillekaan kurssilaisille.

Moniin kieliin verrattuna matematiikan tilanne on kui-
tenkin varsin lohdullinen. Yle raportoi joulukuussa
2025 [1], että jatkossa joidenkin yliopistojen joihinkin
kielten tutkinto-ohjelmiin voi päästä, vaikka kieltä ei
olisi opiskellut aiemmin. Ylen artikkeli kertoo, että täl-
löin opiskelijan on tarkoitus ensimmäisen opiskeluvuo-
den aikana saada sellainen kielitaito, joka vastaa lukion

lyhyttä oppimäärää. Tämän jälkeen voi jatkaa perus-
opintoihin. Ratkaisun takana on se, että useita vierai-
ta kieliä opiskellaan nykyään hyvin vähän. Tämä nä-
kyy myös esimerkiksi eri kielten kirjoittajamäärissä yli-
oppilaskokeessa. Siinä missä kevään 2026 pitkän ja ly-
hyen matematiikan kokeisiin on ilmoittautunut yhteen-
sä 29340 kokelasta, esimerkiksi pitkän ja lyhyen saksan
kokeisiin tänä keväänä on ilmoittautunut yhteensä 1341
kokelasta ja pitkän ja lyhyen ranskan kokeisiin 852 ko-
kelasta [2].

Ylioppilaskokeiden kielten kirjoittajien laskutrendistä
olen itsekin kirjoittanut Solmun pääkirjoituksessa 3/23
näkökulmana se, että alamäki alkoi jo merkittävästi en-
nen korkeakoulujen yhteisvalinnan pisteuudistusta, jos-
sa pitkän matematiikan kokeesta sai reilusti pisteitä.
Pisteytystä on itse asiassa jälleen uudistettu: ensi syk-
systä alkaen pitkä matematiikka ei enää anna niin pal-
jon pisteitä kaikilla aloilla. Toistaiseksi tämän uudis-
tuksen merkitys kirjoittajamäärien kannalta näyttää
pieneltä: edelliseen kevääseen verrattuna pitkän mate-
matiikan kokeeseen on ilmoittautunut 390 kokelasta eli
2,69 % vähemmän kuin vuotta aiemmin ja lyhyen ma-
tematiikan kokeeseen on ilmoittautunut 1024 kokelasta
enemmän [2]. Pitkän matematiikan kokelasmäärän vä-
heneminen on siis hyvin vähäistä, eikä todennäköisesti
vaikuta mitenkään siihen, millaisilla esitiedoilla opiske-
lijat tulevat yliopistolle.

Anne-Maria Ernvall-Hytönen
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Pupujussin kuolema

Markku Halmetoja

Katselin hiljattain ikkunastani takapihalle säätilaa ar-
vioidakseni ja havaitsin pensasaidan vieressä vilkasta
liikehdintää. Joukko harakoita ja variksia näytti pitä-
vän kiivaanpuoleista torikokousta. Ihmettelin, mitä nä-
mä kaksi eivät aivan ystävällisissä väleissä olevaa hei-
moa keskenään puuhaavat, kunnes näin, että ne olivat
yhteisellä aterialla. Ruokalistalla oli edesmennyt pupu-
jussi, jota linnut kilvan näykkivät terävillä nokillaan.
Linnut eivät elävän pupun kimppuun kävisi; kuolinsyy
lienee ollut loukkaantuminen tai vanhuus. Luonnossa
mikään ei mene hukkaan: toisen kuolema on toisen elä-
mä. Tätä kiertokulkua siinä miettiessäni muistin, että
olin parikymmentä vuotta sitten ratkaissut aihetta si-
vuavan tehtävän. Kyseessä oli Helsingin yliopiston ma-
tematiikan laitoksen sivulta löytämäni differentiaaliyh-
tälöitä sisältäneen kurssin laskuharjoituksen tehtävä:

Petolintu lentää 50 metrin korkeudella ja havaitsee
suoraan alapuolellaan pupujussin. Lintu lähtee syöksy-
mään vakiovauhdilla v kohti pupua, joka samalla het-
kellä lähtee loikkimaan nopeudella 10 m/s kohti sadan
metrin päässä olevaa kotikoloaan. Lintu suuntaa syök-
synsä joka hetki pupua kohti. Mikä on pienin v, jolla
lintu tavoittaa pupujussin?

Laadin tuolloin tilanteesta erilaisia yhtälöitä, mutta
jokin tuntui aina estävän ratkaisuun pääsyn. Aikani
veivattuani kysyin neuvoa laskuharjoituksen tekijältä
Petri Olalta (hänelle kiitos), ja hän opastikin asetta-
maan tilanteen koordinaatistoon kuvion osoittamalla
tavalla. Kun vielä merkitään a = 50 m, b = 100 m ja
u = 10 m/s, päästään todella kauniisiin yhtälöihin.

Alkakoon linnun syöksy hetkellä t = 0 ja olkoon y =

f(x) linnun ratakäyrän yhtälö. Lintu lähtee origosta
ja syöksy alkaa kohtisuoraan alas, joten f(0) = 0 ja
f ′(0) = 0. Linnun syöksymisnopeus v(> u) on pienin
mahdollinen silloin, kun se tavoittaa pupun sen kotiko-
lon edustalla. Siis f(a) = b.

Jos lintu on hetkellä t pisteessä (x, f(x)), niin se on ai-
kavälillä [0, t] kulkenut matkan vt ja toisaalta matka on
käyrän y = f(x) välillä [0, x] olevan osan pituus. Siis

vt =
∫ x

0

√
1 + [f ′(ξ)]2 dξ. (1)

Hetkellä t pupu on pisteessä (a, ut). Koska linnun syök-
sy suuntautuu jatkuvasti pupua kohti, saamme sen len-
toradan kohdassa x olevan tangentin kulmakertoimen
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eli funktion f derivaatan esitettyä pupun sijainnin avul-
la,

f ′(x) = f(x) − ut

x − a
,

mistä seuraa

ut = f(x) + f ′(x)(a − x). (2)

Eliminoimalla t:n yhtälöistä (1) ja (2) saamme yhtä-
lön, josta ratkeaa ratakäyrä y = f(x), ja sen avulla v.
Aluksi pahalta näyttävä yhtälö

u

v

∫ x

0

√
1 + [f ′(ξ)]2 dξ = f(x) + f ′(x)(a − x)

siistiytyy derivoimalla muotoon
u

v

√
1 + [f ′(x)]2 = f ′′(x)(a − x). (3)

Merkitsemällä p = f ′(x), jolloin f ′′(x) = dp
dx , saamme

(3):sta
u

v

√
1 + p2 = dp

dx
(a − x),

mistä muuttujat erottamalla tulee
dp√

1 + p2
= u

v

dx

a − x
,

ja edelleen integroimalla

ln
(
p +

√
1 + p2

)
= −u

v
ln (a − x) + A.

Koska p(0) = f ′(0) = 0, saamme A = u
v ln a, ja yhtälö

sievenee muotoon

ln
(
p +

√
1 + p2

)
= u

v
ln

( a

a − x

)
.

Huomaamalla, että tämän yhtälön vasen puoli on hy-
perbolisen sinin∗) käänteisfunktio, saamme

p = sinh
(

ln
( a

a − x

)u/v)
= 1

2

( a

a − x

)u/v

− 1
2

(a − x

a

)u/v

= f ′(x).

Kirjoittamalla derivaatta muotoon

f ′(x) = 1
2

(
1 − x

a

)−u/v

− 1
2

(
1 − x

a

)u/v

saadaan integroimalla

f(x) = av

2(v + u)

(
1 − x

a

)1+u/v

− av

2(v − u)

(
1 − x

a

)1−u/v

+ B.

Ehdosta f(0) = 0 seuraa

B = a

2

( v

v − u
− v

v + u

)
= auv

v2 − u2 ,

joten ratakäyrän yhtälö on

f(x) = av

2(v + u)

(
1 − x

a

)1+u/v

− av

2(v − u)

(
1 − x

a

)1−u/v

+ auv

v2 − u2 .

Ehdosta f(a) = b saamme v:n ratkaisemiseksi yhtälön

f(a) = auv

v2 − u2 = b,

mikä annettujen numeeristen arvojen sijoittamisen jäl-
keen pelkistyy muotoon

v2 − 5v − 100 = 0.

Haukalta vaadittava nopeus on siis

v = 1
2

√
5 + 5

√
17 m/s ≈ 12,81 m/s.

Seuraavana aamuna linnut olivat poissa eikä pupusta
näkynyt suolen pätkääkään. Ilmeisesti kettu oli yön pi-
meydessä käynyt kuittaamassa oman osansa saaliista.

*) Hyperbolisia funktioita sinh ja cosh ei ehkä näy ny-
kylukion oppimäärässä. Niiden määritelmät ovat kui-
tenkin perin yksinkertaiset:

cosh x = 1
2 (ex + e−x) ja sinh x = 1

2 (ex − e−x).

Välittömästi nähdään, että funktiot ovat toistensa de-
rivaattoja ja että cosh x ≥ 1 kaikilla x ∈ R. Täten
hyperbolinen sini on aidosti kasvava ja sillä on kään-
teisfunktio:

y = sinh x = 1
2 (ex − e−x)

⇐⇒

x = sinh−1 y = ln (y +
√

1 + y2).

Hyperbolisten funktioiden nimet muistuttavat trigono-
metristen funktioiden sinin ja kosinin nimiä. Funktioil-
la onkin mielenkiintoinen ja syvällinen yhteys, mikä
paljastuu, kun nämä funktiot määritellään kompleksi-
luvuille. Sitä kannattaa matematiikasta kiinnostuneen
lukiolaisen odottaa ja tehdä ahkerasti töitä, jotta pää-
see matematiikan syventäviin opintoihin yliopistossa.
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Miksei funktiota e−x2 voi integroida? (Osa 2/2)

Milo Orlich
milo.orlich@alumni.aalto.fi

Tämä on artikkelin [3] jatko. Tässä osassa todistetaan
Liouvillen lause. Tätä lausetta ja Lausetta 29 lukuun
ottamatta artikkelin ensimmäisen osan tuloksia ja mää-
ritelmiä ei toisteta.

Jatkossa käytetään seuraavaa notaatiota.

Määritelmä 1. Jos laajennusta K(α) halutaan laa-
jentaa lisää alkiolla β, niin merkinnän K(α)(β) sijaan
kirjoitetaan K(α, β). Ja samoin jos on monta alkiota
α1, . . . , αn, kirjoitetaan K(α1, . . . , αn).

Toistetaan Liouvillen lauseen (eli artikkelin ensimmäi-
sen osan Lauseen 29) väite:

Lause 2 (Liouville). Olkoot K derivaatan suhteen sul-
jettu kunta meromorfisia funktioita ja α ∈ K. On ole-
massa kunnan K alkeislaajennus L ja sellainen y ∈ L,
että y′ = α, jos ja vain jos on olemassa sellaiset
u1, . . . , un, v ∈ K ja c1, . . . , cn ∈ C, että

α =
n∑

i=1
ci

u′
i

ui
+ v′. (1)

Liouvillen lauseen muoto on ”jotain ⇔ jotain”, joten
pitää todistaa, että implikaatio pätee molempiin suun-
tiin. Aloitetaan yksinkertaisemmasta implikaatiosta.

Implikaation ”⇐” todistus. Oletetaan, että on olemas-
sa sellaiset u1, . . . , un, v ∈ K ja c1, . . . , cn ∈ C, että yh-
tälö (1) pätee. Jos on olemassa sellaiset i0 ∈ {1, . . . , n}
ja a ∈ K, että

u′
i0

ui0

= a′,

niin määritellään v̄ := v + ci0a. Jos tämä tapahtuu
uudelleen, niin määritellään v̄ kunnan K alkioiden de-
rivaattoja vastaavien yhtälön (1) termien summaksi.
Voidaan siis olettaa, että jokaisella indeksillä i ei ole
olemassa sellaista a ∈ K, että u′

i/ui = a′. Lisäksi voi-
daan olettaa, että välissä I, jossa v ja kaikki funktiot uj

on määritelty, pätee ui(x) ̸= 0 jokaisella alkiolla x ∈ I
ja indeksillä i ∈ {1, . . . , n}, tai muuten otetaan osaväli
J ⊊ I.

Määritellään nyt ai := log ui jokaisella i ∈ {1, . . . , n}.
Voidaan olettaa, että ai /∈ K(a1, . . . , ai−1), tai muuten
ai yksinkertaisesti ohitetaan. Sitten L := K(a1, . . . , an)
on kunnan K alkeislaajennus. Koska kaikki funktiot ai

sekä v kuuluvat kuntaan L, saadaan myös

y :=
n∑

i=1
ciai + v ∈ L.

Derivoimalla tämä saadaan

y′ =
n∑

i=1
cia

′
i + v′ =

n∑
i=1

ci
u′

i

ui
+ v′ = α.

Huomautus 3. Jos etsitään integraalifunktiota kun-
nan K ulkopuolelta, ainoa mahdollisuus saada se on
lisäämällä äärettömän monta logaritmifunktiota! Esi-
merkiksi rationaalifunktiolla 1

x ei ole integraalifunk-
tiota kunnassa C(x), mutta kyllä on laajennuksessa
C(x)(ln x) = C(x, ln x).
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Liouvillen lauseen implikaation ”⇒” todistus tulee ole-
maan melko pitkä ja tehdään eri tapauksissa. Ensin ke-
rätään paljon apulauseita seuraavassa luvussa. Liouvil-
len lauseen implikaation ”⇒” todistus alkaa sivulla 12.
Todistus jatkuu eri tavalla riippuen siitä, onko kysees-
sä oleva funktio transkendenttinen eksponenttifunktio
(niin kuin kirjoituksen otsikossa) vai algebrallinen.

Todistuksen perusainekset

Tehtävä 4. Tarkista, että seuraava yhtälö pitää paik-
kansa:

(f1f2 · · · fn)′

f1f2 · · · fn
= f ′

1
f1

+ · · · + f ′
n

fn
. (2)

Tulemme käyttämään sitä ja erikoistapausta

(fg)′

fg
= f ′

f
+ g′

g
(3)

pari kertaa jatkossa.

Meromorfisen funktion poolit

Määritelmä 5. Olkoot f ja g holomorfisia funktioita
jossain kompleksitason avoimessa osajoukossa U . Me-
romorfisen funktion f(x)

g(x) poolit (eli navat) ovat funk-
tion g nollakohdat.

Huomautus 6. Ainoa poolien sovellus, jota käytäm-
me jatkossa, on siinä tapauksessa, että kyseessä oleva
meromorfinen funktio on rationaalifunktio eli kahden
polynomin osamäärä P (x)

Q(x) . Oletetaan, että P ja Q ovat
keskenään jaottomat, ja jaetaan nimittäjä tekijöihin:

P (x)
Q(x) = P (x)

ω(x − z1)a1(x − z2)a2 · · · (x − zn)an
.

Tässä z1, . . . , zn ovat eri kompleksilukuja, ω ∈ C
ja a1, . . . , an ovat positiivisia kokonaislukuja. Tietysti
P (zi) ̸= 0 kaikilla i. Sanotaan, että zi on funktion P (x)

Q(x)
ai-kertainen pooli, toisin sanoen poolin zi kertalu-
ku on ai. Huomaamme nyt, että rationaalifunktion de-
rivaatta on sekin rationaalifunktio, ja sen poolien ker-
taluvut ovat välttämättä > 1: jos siis kirjoitetaan

P (x)
Q(x) = f(x)

(x − zi)ai
,

jossa rationaalifunktio f(x) sisältää kaikki muut termit
(x − zj)aj , niin

d

dx

P (x)
Q(x) = (x − zi)aif ′(x) − ai(x − zi)ai−1f(x)

(x − zi)2ai

= (x − zi)f ′(x) − aif(x)
(x − zi)ai+1 ,

eikä zi ole viimeisen osoittajan nollakohta.

Transkendenttisuudesta

Lemma 7. Olkoon α transkendenttinen alkio ja olkoot
P ja Q kaksi eri polynomia. Tällöin P (α) ̸= Q(α).

Todistus. Jos P (α) = Q(α), niin α on polynomin P −Q
juuri. Transkendenttisuuden takia tämä tarkoittaa, et-
tä P − Q on nollapolynomi, eli P = Q.

Lemma 8. Olkoon g(x) ∈ C(x) rationaalifunktio, joka
ei ole vakio. Tällöin funktio eg(x) on transkendenttinen
kunnan C(x) suhteen.

Todistus. Oletetaan, että eg on algebrallinen kunnan
K := C(x) suhteen. Silloin on olemassa sen minimipo-
lynomi

P = Xn + fn−1Xn−1 + · · · + f1X + f0 ∈ K[X].

Derivoidaan yhtälö P (eg) = 0 eli

eng + fn−1e(n−1)g + · · · + f1eg + f0 = 0

saaden

ng′eng +
(
f ′

n−1 + (n − 1)fn−1g′)e(n−1)g+
· · · + (f ′

1 + g′f1)eg+f ′
0 = 0.

On siis olemassa toinen n-asteinen polynomi, jonka ar-
vo funktiolle eg on nolla. Tämä on välttämättä poly-
nomin P kerrannainen, ja korkeimman ja pienimmän
asteen kertoimet ovat verrannolliset:

ng′ = f ′
0

f0
. (4)

Kirjoitetaan rationaalifunktio f0 ∈ C(x) osoittajan ja
nimittäjän tulona lineaarisia, pareittain erillisiä tekijöi-
tä:

f0 =
m∏

i=1
(x − zi)αi , m ∈ N, zi ∈ C(x), αi ∈ Z \ {0}.

Sen derivaatta on

f ′
0 =

[
α1(x − z1)α1−1(x − z2)α2 · · · (x − zm)αm

]
+ · · ·

+
[
αm(x − z1)α1 · · · (x − zm−1)αm−1(x − zm)αm−1]

=
m∑

i=1
αi

f0

x − zi
= f0

m∑
i=1

αi

x − zi
.

Tämän ja yhtälön (4) avulla saamme, että

ng′ =
m∑

i=1

αi

x − zi
.

Huomaamme nyt, että oikealla puolella olevan funk-
tion poolien kertaluku on 1, kun taas ng′ on rationaa-
lifunktion derivaatta, jonka poolien kertaluku on aina
suurempi kuin 1 (ks. Huom 6). Tämä on ristiriita.
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Osamurtokehitelmä

Seuraava apulause on se, jota käytetään eniten Liouvil-
len lauseen todistuksessa. Siinä tapauksessa, että ky-
seessä oleva funktio on transkendenttinen (niin kuin
artikkelin otsikossa), käytetään pelkästään seuraavaa
lausetta.

Lause 9. Olkoot K kunta ja f ∈ K(X) rationaalifunk-
tio, jonka nimittäjä ei ole vakio. Tällöin on olemassa

• luonnollinen luku N ∈ Z>0,

• N pareittain erillistä jaotonta polynomia
V1, . . . , VN ∈ K[X], joiden korkeimman asteen ter-
min kerroin on 1,

• N luonnollista lukua m1, . . . , mN ∈ Z>0,

• jokaisilla i ∈ {1, . . . , N} ja k ∈ {1, . . . , mi}, polyno-
mi Sk,i ∈ K[X], jolle deg Sk,i < deg Vi,

• polynomi S0 ∈ K[X]

siten, että

f = S0 +
N∑

i=1

mi∑
k=1

Sk,i

V k
i

.

Todistus. Kirjoitetaan f = P/Q, missä P, Q ∈ K[X]
ovat keskenään jaottomat ja deg Q ≥ 1. Olkoon

Q = V ν1
1 V ν2

2 · · · V νN

N

alkutekijähajotelma (eli Vi ̸= Vj , ja kaikki Vi:t ovat
jaottomat). Jos N = 1, niin funktio on jo yhtälön (5)
muodossa. Jos N > 1, polynomit V ν1

1 ja

Q̃ := V ν2
2 · · · V νN

N

ovat keskenään jaottomat. Bézout’n yhtälön (ks. artik-
kelin osa 1) mukaan on olemassa S, T ∈ K[X] siten,
että SV ν1

1 + TQ̃ = 1. Nyt voidaan kirjoittaa

f = P

Q
= P (SV ν1

1 + TQ̃)
V ν1

1 Q̃
= PS

Q̃
+ PT

V ν1
1

,

missä jälkimmäisen yhteenlaskettavan nimittäjä on
jaottoman polynomin potenssi. Jos N − 1 > 1, tois-
tetaan sama prosessi, jolloin saadaan

f = ∗
˜̃Q

+ ∗
V ν2

2
+ PT

V ν1
1

,

missä ˜̃Q = V ν3
3 · · · V νN

N ja pikku tähdet esittävät sopivia
polynomeja. Äärellisen monen askelen jälkeen saadaan

f = R1

V ν1
1

+ · · · + RN

V νN

N

=
N∑

i=1

Ri

V νi
i

(5)

joillain polynomeilla R1, . . . , RN ∈ K[X]. Mikäli
deg Ri > deg Vi tietyllä indeksillä i, Eukleideen algo-
ritmin avulla saadaan sellaiset Qi ja Si, että Ri =

QiVi + Si ja deg Si < deg Vi. Silloin summan (5) i:s
yhteenlaskettava voidaan kirjoittaa muotoon

Ri

V νi
i

= QiVi + Si

V νi
i

= Qi

V νi−1
i

+ Si

V νi
i

.

Mikäli deg(Qi) > deg(Vi), sama prosessi toistetaan,
kunnes

Ri

V λi
i

= S0,i +
mi∑

k=1

Sk,i

V k
i

, (6)

missä deg Sk,i < deg Vi jokaisella k ∈ {1, . . . , mi}.
Lopuksi, mikäli polynomin Vi korkeimman asteen ter-
min kerroin on a ̸= 1, voidaan määritellä V̄i := Vi

a ja
S̄k,i := Sk,i

ak . Tällöin polynomin V̄i korkeimman asteen
termin kerroin onkin 1, ja Sk,i

V k
i

= S̄k,i

V̄ k
i

.

Esimerkki 10. Edellistä lausetta käytetään jatkossa
”teoreettisena” tuloksena, emmekä ole kiinnostuneita
erityisistä rationaalifunktioista. Voi olla kuitenkin hyö-
dyllistä käydä todistus läpi ymmärtääksesi, miten se
toimii. Esimerkiksi siinä tapausessa, että annettu ra-
tionaalifunktio on P

Q = x3

x+1 , niin N = 1 ja ainoa ni-
mittäjän jaoton tekijä on V1 = x + 1. Voit tarkistaa,
että lauseen todistus tuottaa osamurtokehitelmän

x3

x + 1 = (x2 − 1 + 1)(x + 1)
x + 1 − 1

x + 1

= x2 − x + 1 − 1
x + 1 .

Tämä onkin helppo rationaalifunktio. Voit kokeilla itse
vaikeampia esimerkkejä.

Polynomin juuret

Alkio r on polynomin P juuri, jos P (r) = 0. Toisin
sanoen r on polynomiyhtälön P (x) = 0 ratkaisu. Al-
gebran pääongelma on löytää tällaisia juuria. Jos ker-
roinjoukko on liian pieni, on vaikeaa löytää niitä, joten
joukkoa laajennetaan:
• Polynomilla X + 1 ei ole juurta joukossa N, mutta

sillä on juuri −1 joukossa Z.
• Polynomilla 2X − 1 ei ole juurta joukossa Z, mutta

sillä on juuri 1
2 joukossa Q.

• Polynomilla X2 − 2 ei ole juurta joukossa Q, mutta
sillä on juuri

√
2 joukossa R.

• Polynomilla X2 + 1 ei ole juurta joukossa R, mutta
sillä on juuri i joukossa C.

Kuten näimme, Q ⊂ R ⊂ C on ketju kuntalaajennuk-
sia. Juuri tämän takia kuntalaajennuksia tutkitaan: ha-
luamme laajentaa kuntaa niin, että juuria löytyy. Huo-
maa, ettei tarvitse ottaa kuntaa R juuren löytämiseksi
polynomille X2 − 2 ∈ Q[X]: laajennus Q(

√
2) riittää.

Lause 11 (algebran peruslause). Jokaisella epävakiol-
la polynomilla P ∈ C[X] on jokin juuri joukossa C.
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Itse asiassa tätä lausetta voi käyttää todistamaan, et-
tä m-asteisella kompleksikertoimisella polynomilla on
täsmälleen m juurta, jos lasketaan kertalukuja. Toisin
sanoen, m-asteinen polynomi P ∈ C[X] voidaan kir-
joittaa tulona lineaarisia termejä

P (X) = (X − z1)(X − z2) · · · (X − zm),

missä jotkut juuret zi ∈ C voivat toistua. (Vaikka edel-
listä lausetta kutsutaan ”peruslauseeksi”, se ei ole mi-
kään triviaali tulos.) Tämä seuraa edellisestä lauseesta
ja siitä, että r on polynomin P juuri jos ja vain jos
X − r jakaa polynomin P , eli P = (X − r)Q jollakin
polynomilla Q. (Ks. kirjan [2] Lause 22.9.)

Määritelmä 12. Olkoot P polynomi ja r sen juuri.
Juuren r kertaluku on korkein n, jolle (X −r)n jakaa
polynomin P , eli korkein n, jolle voidaan kirjoittaa

P = (X − r)nQ,

jossa Q(r) ̸= 0.

Lemma 13. Polynomille P ∈ C[X] seuraavat ehdot
ovat yhtäpitävät:

• kaikkien P :n juurien kertaluvut ovat = 1,

• P ja P ′ ovat keskenään jaottomat.

Todistus. Oletetaan, että polynomilla P on juuri r, jon-
ka kertaluku on n > 1. Tällöin P (X) = (X − r)nQ(X)
jollain sopivalla Q, jolle pätee Q(r) ̸= 0. Tällöin

P ′(X) = n(X − r)n−1Q(X) + (X − r)nQ′(X),

joten P ′(r) = 0. Tämä tarkoittaa, että X−r jakaa myös
polynomin P ′. Jos sen sijaan n = 1, niin P ′(r) ̸= 0, eli
r ei ole derivaatan juuri. Mutta koska polynomin P
voi jakaa lineaarisiin tekijöihin, niin jos kaikkien juu-
rien kertaluvut ovat = 1, niin P ja P ′ ovat keskenään
jaottomat.

Olkoon m ∈ Z>0. Kirjoittamalla jatkossa Cm
w tarkoi-

tamme, että karteesiselle tulolle Cm = C× · · · ×C ote-
taan koordinaatit (w1, . . . , wm). Seuraavakin lause on
melko kuuluisa.

Lause 14 (Implisiittisen funktion lause). Olkoot
m, n ∈ Z>0 ja A tulon Cn+m = Cn

z ×Cm
w avoin joukko.

Olkoon F = (F1, . . . , Fn) : A → Cn holomorfinen funk-
tio. Olkoon (z0, w0) = (z0

1 , . . . , z0
n, w0

1, . . . , w0
m) ∈ A sel-

lainen piste, että F (z0, w0) = 0 ja Jacobin matriisi sii-
nä pisteessä, eli

∂F1(z0,w0)
∂z1

· · · ∂Fn(z0,w0)
∂z1

...
. . .

...
∂F1(z0,w0)

∂zn
· · · ∂Fn(z0,w0)

∂zn

 ,

on kääntyvä. Tällöin on olemassa pisteen z0 ∈ Cn

avoin ympäristö U , pisteen w0 ∈ Cm avoin ympäris-
tö V ja holomorfinen funktio h : V → U siten, että

• U × V ⊆ A,

• F (h(w), w) = 0 kaikilla w ∈ V ,

• h(w0) = z0.

Lause 15. Olkoon K kunta meromorfisia funktioita re-
aalivälissä I ja olkoon P ∈ K[X] m-asteinen jaoton po-
lynomi. Tällöin jollekin osavälille J ⊆ I on olemassa
sellaiset pareittain erilliset meromorfiset funktiot

f1, . . . , fm : J → C,

että P (fi) = 0 jokaisella i = 1, . . . , m.

Todistus. Olkoon

Q(x) = xm + cm−1xm−1 + · · · + c1x + c0 ∈ C[x]

sellainen polynomi, jolla on m parittain erillistä juurta
z1, . . . , zm ∈ C. Lemmasta 13 seuraa, että polynomeilla
Q ja

Q′(x) =
m∑

i=1
icix

i−1

ei ole yhteisiä tekijöitä, joten Q′(zi) ̸= 0 kaikilla i. Mää-
ritellään holomorfinen funktio

F : Cm+1 → C,

(x, a0, . . . , am−1) 7→ xm + am−1xm−1 + · · · + a1x + a0.

Haluamme nyt käyttää Lausetta 14, ja päätelläksemme
Jacobin matriisin kääntyvyyden riittää huomata, että

∂F

∂x
(zi, c0, . . . , cm−1) = Q′(zi) ̸= 0

jokaisella i ∈ {1, . . . , m}. Käytämme Lausetta 14
m kertaa, yhden kerran jokaisella zi. On olemassa pis-
teen (c0, . . . , cm−1) avoin ympäristö V ⊆ Cm, pisteiden
zi avoimet ympäristöt Ui ⊆ C ja m holomorfista funk-
tiota hi : V → Ui niin, että

• jokaisella (a0, . . . , am−1) ∈ V

F
(
hi(a0, . . . , am−1), a0, . . . , am−1

)
= 0,

eli hi(a0, . . . , am−1) on polynomin xm +am−1xm−1 +
· · · + a0 juuri;

• hi(c0, . . . , cm−1) = zi jokaisella i ∈ {1, . . . , m}.

Olkoon nyt

P (X) =
m∑

i=0
giX

i ∈ K[X]

polynomi kuten lauseen väitteessä. Voimme olettaa, et-
tä kaikki funktiot gi ovat määritellyt välissä I, tai muu-
ten otetaan sellainen osaväli. Voimme myös olettaa, et-
tä funktio gm ei ole koskaan nolla välissä I. Toisin sa-
noen, voimme jakaa funktiolla gm, tai itse asiassa olet-
taa alusta alkaen, että polynomin P korkeimman as-
teen termin kerroin on gm = 1.
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Jokaisella reaaliluvulla t ∈ I määritellään polynomi

Pt(x) :=
m∑

i=0
gi(t)xi ∈ C[x].

Etsimme sellaisen t0 ∈ I, että polynomilla Pt0 on m pa-
rittain erillistä juurta. Koska P on jaoton, P ja P ′ ovat
keskenään jaottomat. Bézout’n lauseen mukaan (ks. ar-
tikkelin osa 1) on olemassa sellaiset S, T ∈ K[X], että

SP + TP ′ = 1. (7)

Voimme olettaa, että polynomien S ja T kaikki kertoi-
met — jotka ovat kunnan K alkioita, eli funktioita —
ovat määritellyt välissä I, tai muuten otetaan osaväli.
Jokaisella t ∈ I voimme siis määritellä polynomit P ′

t ,
St ja Tt samalla tavalla kuin polynomin Pt. Yhtälöstä 7
saamme yhtälön

StPt + TtP
′
t = 1,

joka pätee renkaassa C[x]. Tästä seuraa, että Pt ja P ′
t

ovat keskenään jaottomat, ja Lemman 13 nojalla tämä
tarkoittaa, että polynomilla Pt on m erillistä juurta.
Tämä pitää paikkansa jokaisella reaaliluvulla t välissä
I, tai osavälissä J , jos sitä tarvitaan. Sellaiset polyno-
mit Pt ovat niin kuin polynomi Q todistuksen alussa.
Olkoon siis t0 ∈ J ja olkoot z1, . . . , zm polynomin Pt0

juuret. Voimme käyttää funktioita h1, . . . , hm saadak-
semme väitteen funktiot

fi(t) = hi

(
g0(t), . . . , gm−1(t)

)
pisteen t0 ympäristössä. Huomaa, että funktiot fi ovat
holomorfisia välin J kompleksiympäristössä.

Symmetriset polynomit

Määritelmä 16. Funktiota σ : A → B kutsutaan bi-
jektioksi, jos σ on sekä injektio että surjektio, eli

• jos a ̸= a′, niin σ(a) ̸= σ(a′),

• jokaisella alkiolla b ∈ B on olemassa sellainen a ∈
A, että σ(a) = b.

Jos A = B, niin bijektiota σ : A → A kutsutaan per-
mutaatioksi.

Huomautus 17. Joukon {1, 2, . . . , n} permutaatio on
siis bijektio σ : {1, 2, . . . , n} → {1, 2, . . . , n}. Toisin sa-
noen σ on ”järjestyksen sekoittaminen”. Joukon {1, 2}
kaksi mahdollista permutaatiota ovat σ1 ja σ2, missä

σ1(1) = 1, σ1(2) = 2 ja σ2(1) = 2, σ2(2) = 1.

Joukon {1, 2, 3} mahdolliset permutaatiot ovat funktiot
σ1, . . . , σ6, joiden arvot σi(1), σi(2) ja σi(3) ovat

1, 2, 3, 2, 1, 3, 3, 2, 1, 1, 3, 2, 2, 3, 1 ja 3, 1, 2.

Määritelmä 18. Polynomia P ∈ K[x1, . . . , xn] kutsu-
taan symmetriseksi polynomiksi, jos

P (x1, . . . , xn) = P (xσ(1), . . . , xσ(n))

millä tahansa indeksien permutaatiolla σ.

Jos kirjoitetaan x ja y x1:n ja x2:n sijaan, esimerkiksi
renkaassa K[x, y] polynomit x2 + y2 ja xy ovat sym-
metriset, mutteivät polynomit x2 + y ja x3y.

Jokaisella luonnollisella luvulla n renkaassa
K[x1, . . . , xn] on olemassa tärkeitä symmetrisiä po-
lynomeja, nimittäin niin kutsutut symmetriset pe-
ruspolynomit:

s1 := x1 + x2 + · · · + xn,

s2 := x1x2 + x1x3 + · · · + xn−1xn,

...
sn := x1x2 · · · xn.

Nämä ovat symmetristen polynomien ”atomit”, sillä jo-
kainen symmetrinen polynomi voidaan esittää niiden
polynomina seuraavan kuuluisan lauseen mukaan.

Lause 19 (Newton). Olkoot R rengas ja S ∈
R[x1, . . . , xn] symmetrinen polynomi. On olemassa yk-
sikäsitteinen polynomi Q ∈ R[y1, . . . , yn] siten, että

S(x1, . . . , xn) = Q(s1, . . . , sn).

Esimerkki 20. Renkaassa R[x, y] symmetriset perus-
polynomit ovat x + y ja xy. Esimerkiksi x2 + y2 on
symmetrinen ja

x2 + y2 = (x + y)2 − 2(xy).

Eli lauseen vastaava polynomi Q ∈ R[y1, y2] on y2
1 −

2y2.

Lause 21. Olkoot K kunta, m ∈ N ja P ∈ K[x] m-
asteinen polynomi, jolla on pareittain erilliset juuret
z1, . . . , zm jossakin sopivassa kunnan K laajennukses-
sa. Jos S ∈ K[x1, . . . , xm] on symmetrinen polynomi,
niin S(z1, . . . , zm) ∈ K.

Todistus. Lauseen 19 avulla voi kirjoittaa

S(x1, . . . , xm) = Q(s1, . . . , sm)

sopivalla polynomilla Q ∈ K[y1, . . . , ym]. Eksplisiitti-
sesti

P (X) = (X − z1)(X − z2) · · · (X − zm)
= Xm − a1Xm−1 + a2Xm−2 − · · · ± am

joillain a1, . . . , am ∈ K. Huomaa, että ai =
si(z1, . . . , zm) jokaisella i ∈ {1, . . . , m}. Joten
S(z1, . . . , zm) = Q(a1, . . . , am), ja tämä on kunnan K
alkio.
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Algebralliset alkiot, joilla on sama minimipoly-
nomi

Olkoot K kunta ja L sen laajennus. Olkoot f, g ∈ L\K
kaksi algebrallista alkiota, joilla on sama minimipoly-
nomi P kunnan K suhteen. Tämän pykälän päätulos
on Lause 24: siinä tapauksessa, että K on kunta, jossa
voidaan ottaa derivaatta, niin voidaan sijoittaa f ja f ′

alkioiden g ja g′ paikalle tietyllä tavalla.
Tehtävä 22. Oletetaan, että algebralliset alkiot f ja g
ovat niin kuin edellä, ja olkoon P niiden minimipolyno-
mi kunnan K suhteen. Olkoon n := deg(P ) − 1. Silloin
kunnan K(f) alkio on muotoa a =

∑n
i=0 aif

i joillain
ai ∈ K. Määritellään nyt funktio

π : K(f) −→ K(g),
n∑

i=0
aif

i 7−→
n∑

i=0
aig

i,

joka sijoittaa alkion g alkion f paikalle. Osoita, että

π(a + b) = π(a) + π(b) ja π(ab) = π(a)π(b)

jokaisella a, b ∈ K(f). (Toisin sanoen tämä funktio π
on kuntien välinen isomorfismi.)
Lemma 23. Samalla notaatiolla π(f ′) = g′.
Todistus. Samalla tavalla kuin artikkelin ensimmäisen
osan Lemman 27 todistuksessa voi osoittaa, että

f ′ = −
∑n

i=0 a′
if

i∑n
i=1 iaif i−1 ja g′ = −

∑n
i=0 a′

ig
i∑n

i=1 iaigi−1 .

Edellisen tehtävän nojalla,

π(f ′) = −
∑m

i=0 a′
iπ(f)i∑m

i=1 iaiπ(f)i−1 .

Tämä on yhtä kuin g′, koska π(f) = g.
Lause 24. Olkoot K kunta meromorfisia funktioita ja
f, g kaksi algebrallista alkiota kunnan K suhteen. Ole-
tetaan, että alkioilla f ja g on sama minimipolynomi
P ∈ K[X]. Olkoon Q ∈ K[Y, Z] kahden muuttujan po-
lynomi, ja oletetaan, että Q(f, f ′) ∈ K. Tällöin

Q(f, f ′) = Q(g, g′).

Todistus. Koska funktion π rajoittuma kuntaan K on
identiteetti,

Q(f, f ′) = π(Q(f, f ′)).

Edellisen tehtävän nojalla

π(Q(f, f ′)) = Q(π(f), π(f ′)).

Lopuksi tiedetään, että π(f) = g suoraan määritelmäs-
tä ja π(f ′) = g′ edellisestä lemmasta.
Tätä pykälää voi varmaan lähestyä helpommin, jos niin
sanotun tekijärenkaan käsite ja ensimmäinen homo-
morfismin lause ovat tutut. (Ks. kirjan [2] pykälät 16
ja 20.) Tästä näkökulmasta olisi ilmeistä, että K(f) ja
K(g) ovat ”likimain sama asia”.

Implikaation ”⇒” todistuksen alku

Oletetaan, että on olemassa alkeislaajennus L niin kuin
lauseen väitteessä. Eli L = K(f1, . . . , fN ) joillakin al-
keisfunktioilla f1, . . . , fN . Todistus tehdään induktiolla
N :n suhteen. Jos N = 0, niin L = K, ja on olemassa
funktion α integraalifunktio y ∈ L. Siis v := y kelpaa.
Kun N > 0, kirjoitetaan

K(f1, . . . , fN ) = K(f1)
(
f2, . . . , fN

)
ja oletetaan, että väite pitää paikkansa kunnalle K(f1),
eli on olemassa sellaiset t1, . . . , tn, w ∈ K(f1) ja
d1, . . . , dn ∈ C, että

α =
n∑

i=1
di

t′
i

ti
+ w′. (8)

Jatkossa etsimme funktioita u1, . . . , un, v funktioi-
den t1, . . . , tn, w kautta ja kompleksilukuja c1, . . . , cn

kompleksilukujen d1, . . . , dn kautta.

Riippuen siitä, onko f1 transkendenttinen (ekspo-
nentti- tai logaritmifunktio) vai algebrallinen alkio kun-
nan K suhteen, todistus sujuu eri tavalla. Tässä kir-
joituksessa käymme läpi ne tapaukset, että f1 on
transkendenttinen eksponenttifunktio tai algebrallinen,
ja transkendenttisen logaritmifunktion tapaus jätetään
tehtäväksi.

Implikaation ”⇒” todistuksen jatko: jos
f1 on transkendenttinen

Koska f1 on transkendenttinen alkio, jokainen yhtälös-
sä (8) oleva funktio ti ∈ K(f1) voidaan esittää osamää-
ränä

ti = Pi(f1)
Qi(f1)

sopivilla keskenään jaottomilla polynomeilla Pi, Qi ∈
K[X]. Koska

( a
b )′

a
b

= a′

a
− b′

b
,

identiteetistä (8) tulee

α =
n∑

i=1
di

(Pi(f1))′

Pi(f1) −
n∑

i=1
di

(Qi(f1))′

Qi(f1) + w′. (9)

Olkoot R1, . . . , RN kaikkien polynomien Pi ja Qi kaik-
ki jaottomat tekijät, toistaen mahdollisesti monta ker-
taa ne, jotka esiintyvät eri polynomeissa ja korkealla
potenssilla. (Eli voi olla, että Ri = Rj , vaikka i ̸= j.)
Huomaa, että N ≥ n. Identiteetin (2) nojalla voidaan
kirjoittaa (9) muodossa

α =
N∑

i=1
ei

(Ri(f1))′

Ri(f1) + w′
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joillain sopivilla kompleksiluvuilla ei. Olkoon ui ∈ K
polynomin Ri korkeimman asteen termin kerroin, jo-
ten voimme kirjoittaa Ri = uiMi, missä polynomin Mi

vastaava kerroin on 1. Identiteetin (3) avulla

α =
N∑

i=1
ei

u′
i

ui
+

N∑
i=1

ei
(Mi(f1))′

Mi(f1) + w′.

Voi olla, että jälkimmäisessä summassa Mi = Mj vaik-
ka i ̸= j. Kirjoitetaan sitten yhteen ne polynomit Mi,
jotka toistuvat niin, että

α =
N∑

i=1
ei

u′
i

ui
+

Ñ∑
i=1

εi
(Mi(f1))′

Mi(f1) + w′ (10)

sopivilla uusilla kertoimilla εi ja luonnollisella luvul-
la Ñ ≤ N .

Loppusilaukseksi, koska w on kunnan K(f1) alkio, on
olemassa sellainen g ∈ K(X), että w = g(f1). Sovelle-
taan tälle funktiolle g Lausetta 9 saaden

w = S0(f1) +
N∑

i=1

mi∑
k=1

Sk,i(f1)
V k

i (f1)
.

Yhtälöstä (10) tulee siis

α =
N∑

i=1
ei

u′
i

ui
+

Ñ∑
i=1

εi
(Mi(f1))′

Mi(f1) + (S0(f1))′ (11)

+
N∑

i=1

mi∑
k=1

(Sk,i(f1))′

V k
i (f1)

−
N∑

i=1

mi∑
k=1

k
Sk,i(f1)(Vi(f1))′

V k+1
i (f1)

.

Jos f1 on eksponenttifunktio

Olkoon f1 transkendenttinen eksponenttifunktio kun-
nan K suhteen.

Lemma 25. Olkoon

P (X) = amXm + · · · + a0 =
m∑

i=0
aiX

i, (am ̸= 0)

m-asteinen polynomi renkaassa K[X]. Tällöin polyno-
mille

P̃ (X) :=
m∑

i=0
(iaib

′ + a′
i)Xi ∈ K[X]

pätee (P (f1))′ = P̃ (f1).

Todistus. Koska f1 on eksponenttifunktio kunnan K
suhteen, on olemassa sellainen b ∈ K, että f ′

1 = b′f1.

Silloin

(P (f1))′ =
m∑

i=0
a′

if
i
1 +

m∑
i=1

iaif
′
1f i−1

1

= a′
0 +

m∑
i=1

a′
if

i
1 +

m∑
i=1

iai
f ′

1
f1

f i
1

= a′
0 +

m∑
i=1

(a′
i + iaib

′)f i
1

=
m∑

i=0
(a′

i + iaib
′)f i

1 = P̃ (f1).

Lemma 26. Käyttäen samaa notaatiota kuin edellä
mamb′ + a′

m ̸= 0, eli

deg P̃ = deg P = m.

Todistus. Jos päinvaistoin olisi mamb′ + a′
m = 0, niin

(amfm
1 )′ = a′

mfm
1 + mamf ′

1fm−1
1

= a′
mfm

1 + mamb′fm
1

= (a′
m + mamb′)fm

1 = 0.

Eli amfm
1 olisi vakiofunktio, toisin sanoen kompleksi-

luku. Tämä on ristiriita, koska am ̸= 0 ja f1 on trans-
kendenttinen.

Lemma 27. Jos am on vakiofunktio ja P jakaa poly-
nomin P̃ , niin P on monomi.

Todistus. Koska asteet ovat yhtä suuret, P jakaa po-
lynomin P̃ jos ja vain jos on olemassa sellainen k ∈ K,
että kP = P̃ . Korkeimman asteen (eli m) termeille tä-
mä tarkoittaa

kam = mamb′ + a′
m = mamb′,

missä toinen yhtälö pätee, koska am on vakio. Koska
am ̸= 0 seuraa, että k = mb′. Tällöin a′

imb′ = iaib
′+a′

i,
eli a′

i−ai(m−i)b′ = 0 kaikille i ∈ {0, . . . , m−1}. Mutta
sitten jokaisella indeksillä i(

ai

fm−i
1

)′

= a′
if

m−i
1 − ai(m − i)fm−i

1 b′

(fm−i
1 )2

= a′
i − ai(m − i)b′

fm−i
1

= 0,

eli ai/fm−1
1 on jokin vakio ci ∈ C. Yhtälöstä ai =

cif
m−1
1 ja siitä, että f1 on transkendenttinen, seuraa,

että ai = ci = 0 jokaisella i ∈ {0, . . . , m − 1}. Toisin
sanoen P on monomi amXm.

Sovelletaan nyt edelliset huomautukset yhtälöön (11).
Jokaisella i ∈ {1, . . . , n} on olemassa polynomit
M̃i, Ṽi ∈ K[X] niin, että

(Mi(f1))′ = M̃i(f1) ja (Vi(f1))′ = Ṽi(f1).
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Samalla tavalla on olemassa polynomit S̃0 ja S̃k,i. Yh-
tälöstä (11) tulee sitten

α =
N∑

i=1
ei

u′
i

ui
+

Ñ∑
i=1

εi
M̃i(f1)
Mi(f1) + S̃0(f1) (12)

+
N∑

i=1

mi∑
k=1

S̃k,i(f1)
V k

i (f1)
−

N∑
i=1

mi∑
k=1

k
Sk,i(f1)Ṽi(f1)

V k+1
i (f1)

.

Muistetaan, että jos i ̸= j, niin Mi ̸= Mj ja Vi ̸= Vj .
Olkoot Mi1 , . . . , Mis

ne polynomit joukosta {Mi}, jot-
ka eivät ole yhtä kuin mikään polynomi Vj . Kun mää-
ritellään

L := V m1+1
1 · · · V

m
N

+1
N

Mi1 · · · Mis ,

niin L(f1) on suurin yhteinen nimittäjä identiteetis-
sä (12). Se osamäärä, jonka nimittäjä on korkein alkion
V1(f1) potenssi, löytyy viimeisestä (tupla)summasta in-
deksiarvoilla i = 1 ja k = m1. Voidaan siis kirjoittaa

P(f1)
V m1

1 (f1)V m2+1
2 (f1) · · · V

m
N

+1
N

(f1)Mi1(f1) · · · Mis
(f1)

= −m1
Sm1,1(f1)Ṽ1(f1)

V m1+1
1 (f1)

jollain sopivalla polynomilla P ∈ K[X]. Kerrotaan mo-
lemmat puolet alkiolla − 1

m1
L(f1), jolloin saadaan

− 1
m1

P(f1)V1(f1) = Sm1,1(f1)Ṽ1(f1)

· V m2+1
2 (f1) · · · V

m
N

+1
N

(f1)
· Mi1(f1) · · · Mis(f1).

Koska f1 on transkendenttinen, Lemmasta 7 seuraa,
että

− 1
m1

PV1 = Sm1,1Ṽ1V m2+1
2 · · · V

m
N

+1
N

Mi1 · · · Mis
.

Jaoton polynomi V1 on selvästi vasemman puolen teki-
jä. Ainoa tapa, jolla V1 voi jakaa oikean puolen, on että
V1 jakaa polynomin Ṽ1. Koska polynomin V1 korkeim-
man asteen termin kerroin on 1, Lemman 27 nojalla
saadaan, että V1 on itse asiassa monomi ja välttämättä
monomi X.
Jos sama prosessi tehdään muille polynomeille Vi, ja
koska Vi ̸= V1, huomaamme, ettei Vi esiinny yh-
tälössä (12). Samanlaisella tavalla voi päätellä, että
M1 = X, eivätkä muut polynomit Mi esiinny. Lopuksi
Lauseesta 9 seuraa, että deg Sk,1 < deg V1 = 1 jokaisel-
la k ∈ {1, . . . , m1}, joten Sk,1 = Sk,1(f1) = σk jollakin
σk ∈ K. Yhtälöstä (12) tulee sitten

α =
N∑

i=1
ei

u′
i

ui
+ ε1

f ′
1

f1
+ S̃0(f1) +

m1∑
k=1

σ′
k

fk
1

−
m1∑
k=1

k
σkf ′

1

fk+1
1

=
N∑

i=1
ei

u′
i

ui
+ ε1b′ +

m1∑
k=1

σ′
k − kb′σk

fk
1

+ S̃0(f1).

Jos yksikin termeistä σ′
k −kb′σk olisi epänolla, niin ker-

tomalla molemmat puolet alkiolla fm1
1 saisimme epä-

nollan polynomin, jolle f1 on juuri. Tämä on ristiriita,
koska f1 on transkendenttinen, joten kaikki nuo termit
ovat nollia ja

α =
N∑

i=1
ei

u′
i

ui
+ ε1b′ + S̃0(f1).

Polynomin S̃0 määritelmästä ja Lemmasta 26 seuraa,
että deg(S̃0) = 0, eli S0 = S0(f1) = s0 ∈ K. Voi siis
kirjoittaa

α =
N∑

i=1
ei

u′
i

ui
+ ε1b′ + s′

0,

ja määrittelemällä v := ε1b + s0 saamme yhtälön (1).

Jos f1 on logaritmifunktio

Tehtävä 28. Tee todistus itse seuraten suunnilleen sa-
maa strategiaa kuin eksponenttifunktion tapauksessa.

Vihje: Lemmat 25, 26 ja 27 pitää muokata. Esimerkiksi
uusi polynomi P̃ on

P̃ (X) := a′
mXm +

m−1∑
i=0

(
a′

i + (i + 1)ai+1
b′

b

)
Xi.

Huomaa, että

• jos am on vakio, niin deg(P̃ ) < deg(P ),

• jos am ei ole vakio, niin deg(P̃ ) = deg(P ).

Implikaation ”⇒” todistuksen jatko: jos
f1 on algebrallinen

Aloitetaan taas yhtälöstä (8) eli

α =
n∑

i=1
di

t′
i

ti
+ w′,

missä t1, . . . , tn, w ∈ K(f1). Koska nyt oletetaan, et-
tä f1 on algebrallinen, on olemassa sellaiset polynomit
P1, . . . , Pn, Q ∈ K[X], että ti = Pi(f1) ja w = Q(f1)
jokaisella i ∈ {1, . . . , n}. Koska K(f1) on kunta, on ole-
massa polynomit R1, . . . , Rn ∈ K[X] niin, että

1
Pi(f1) = Ri(f1). (13)

Yhtälöstä (8) tulee

α =
n∑

i=1
di(Pi(f1))′Ri(f1) + (Q(f1))′. (14)

Olkoon M ∈ K[X] alkion f1 minimipolynomi kunnan
K suhteen, ja olkoon m := deg(M). Lemman 15 avulla
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polynomilla M on m pareittan erillistä meromorfista
juurta z1, . . . , zm, ja yksi niistä on f1. Jollekin sopival-
le polynomille T ∈ K[X, Y ] yhtälön (14) oikea puoli on
yhtä kuin T (f1, f ′

1). Koska z1, . . . , zm ovat saman jaot-
toman polynomin juuret, voimme käyttää Lausetta 24
saaden

α =
n∑

i=1
di(Pi(zk))′Ri(zk) + (Q(zk))′

jokaisella k ∈ {1, . . . , m}. Jos otetaan summa kaikkien
indeksien k ∈ {1, . . . , m} suhteen, saamme

mα =
m∑

k=1

( n∑
i=1

di(Pi(zk))′Ri(zk) + (Q(zk))′
)

.

Tästä ja yhtälöstä (13) seuraa, että

α = 1
m

n∑
i=1

m∑
k=1

di
(Pi(zk))′

Pi(zk) + 1
m

( m∑
k=1

Q(zk)
)′

.

Sovelletaan yhtälöä (2) ensimmäisessä termissä esiin-
tyvään summaan saaden

α = 1
m

n∑
i=1

di

(
Pi(z1)Pi(z2) · · · Pi(zm)

)′

Pi(z1)Pi(z2) · · · Pi(zm)

+ 1
m

( m∑
k=1

Q(zk)
)′

.

Jokaisella i ∈ {1, . . . , n} määritellään polynomi

Si(X1, . . . , Xm) := Pi(X1) · · · Pi(Xm)

renkaassa K[X1, . . . , Xm]. Polynomi Si on symmetri-
nen, joten siihen voidaan soveltaa Lausetta 21, kun
määritellään

ui := Si(z1, . . . , zm) = Pi(z1) · · · Pi(zm),

jolloin saadaan, että ui on kunnan K alkio. Samalla
tavalla voimme ottaa toisen symmetrisen polynomin

S(X1, . . . , Xm) :=
m∑

k=1
Q(Xk),

jolloin v := 1
m S(z1, . . . , zk) = 1

m

∑m
k=1 Q(zk) on kun-

nan K alkio. Eli voimme kirjoittaa

α = 1
m

n∑
i=1

di
u′

i

ui
+ v′,

ja saamme yhtälön (1), kun määritellään ci := di/m.

Seurauksen todistus

Todistetaan lopuksi artikkelin ensimmäisen osan
Lause 30 eli seuraava lause.

Lause 29. Olkoot f, g ∈ C(x), missä f ei ole nolla
eikä g ole vakio, määritellyt jossakin reaalivälissä J .
Tällöin funktiolla

J −→ C,

x 7−→ f(x)eg(x)

on alkeisintegraalifunktio, jos ja vain jos on olemassa
sellainen rationaalifunktio a ∈ C(x), että

f = a′ + ag′. (15)

Todistus. (⇐) Oletetaan, että jokin rationaalifunktio
a ∈ C(x) toteuttaa f = a′ + ag′. Määritellään

h(x) := a(x)eg(x), K := C(x).

Koska eg on eksponenttifunktio kunnan K suhteen,
K(eg) on kunnan C(x) alkeislaajennus. Joten h, joka
on tämän laajennuksen alkio, on alkeisfunktio. Lopuksi
otetaan derivaatta:

h′ = a′eg + ag′eg = (a′ + ag′)eg = feg.

(⇒) Olkoot f epänolla ja g epävakio. Olkoon L kunnan
C(x) sellainen alkeislaajennus, johon kuuluu funktion
feg integraalifunktio y. Silloin kuntaan L kuuluu myös
y′ = feg sekä eg, joten L on kunnan C(x)(eg) alkeis-
laajennus. Olkoon

α := feg, K := C(x)(eg).

Liouvillen lauseen mukaan on olemassa sellaiset
t1, . . . , tn, w ∈ K ja d1, . . . , dn ∈ C, että

α =
n∑

i=1
di

t′
i

ti
+ w′.

Tämän voi kirjoittaa eri tavalla Lauseen 9 nojalla, ja
niin kuin Liouvillen lauseen todistuksessa saamme yh-
tälön

α =
N∑

i=1
ei

u′
i

ui
+

Ñ∑
i=1

εi
(Mi(f1))′

Mi(f1) + (S0(f1))′ (16)

+
N∑

i=1

mi∑
k=1

(Sk,i(f1))′

V k
i (f1)

−
N∑

i=1

mi∑
k=1

k
Sk,i(f1)(Vi(f1))′

V k+1
i (f1)

.

Lauseen 8 mukaan, eg on transkendenttinen kunnan
C(x) suhteen, joten voimme käyttää samaa strategiaa
kuin Liouvillen lauseen todistuksen osassa, joka koskee
transkendenttisia eksponenttifunktioita. Lisäksi kirjoi-
tetaan α eli feg renkaan C(x)[X] jonakin polynomina
pistessä eg, eli

α = feg = P (eg), P (X) := fX.

Samalla tavalla kuin yllä mainitussa todistuksen osassa
yhtälöstä (16) tulee

P (eg) =
N∑

i=1
ci

u′
i

ui
+ (S0(eg))′ + ε1g′. (17)
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Koska vasemmalla puolella oleva polynomi on ensim-
mäistä astetta, niin pitää myöskin olla polynomin S′

0.
Ja transkendenttisen eksponenttifunktion tapauksen
huomausten mukaan pätee myös deg(S0) = 1, joten

S0(X) = s1X + s0

joillakin sopivilla s1, s0 ∈ C(x). Niinpä yhtälöstä (17)
tulee

feg =
N∑

i=1
ci

u′
i

ui
+ (s1eg + s0)′ + ε1g′

=
N∑

i=1
ci

u′
i

ui
+ s′

1eg + s1g′eg + s′
0 + ε1g′.

Kirjoittamalla eri tavalla saamme

(f − s′
1 − s1g′)eg =

N∑
i=1

ci
u′

i

ui
+ s′

0 + ε1g′,

missä oikea puoli ei sisällä funktiota eg. Jos funk-
tion eg kerroin vasemmalla puolella olisi epänolla, sai-
simme ristiriidan transkendentisuuden kanssa, joten
f − s′

1 − s1g′ = 0 eli

f = s′
1 + s1g′.

Koska s1 ∈ C(x), saamme halutun yhtälön (15).

Viimeisiä kommenteja

Niin kuin sanottu ensimmäisessä osassa on tämä kirjoi-
tus artikkelin [1] inspiroima, paitsi että tässä teemme

kaiken tavallisen derivaatan ”perus”tapauksessa. Peri-
aatteessa on mahdollista analysoida mikä vaan deri-
vaatta seuraavan määritelmän mukaan.

Määritelmä 30. Differentiaalikunta on kunta K,
jossa määritellään sellainen funktio D : K → K, jota
kutsutaan derivaataksi, että jokaisilla alkioilla a, b ∈
K pätee

D(a + b) = D(a) + D(b) ja D(ab) = D(a)b + aD(b).

Esimerkiksi tavallinen derivaatta on derivaatta edelli-
sen määritelmän mukaan. Jos D on derivaatta, niin
on −D myöskin. Tämän kirjoituksen tulokset pitävät
paikkansa yleisemmässä tapauksessa, että kyseessä on
yleinen derivaatta. Matematiikan osa-alue, joka käsit-
telee tällaisia käsitteitä ja tuloksia on differentiaalial-
gebra (engl. differential algebra).

Viitteet

[1] C. De Lellis. Il teorema di Liouville ovvero perché
“non esiste” la primitiva di ex2 . La Matematica nel-
la Società e nella Cultura. Rivista dell’Unione Ma-
tematica Italiana 7.1 (2014): 55–97.

[2] J. Häsä, J. Rämö. Johdatus abstraktiin algebraan.
Gaudeamus (2015).

[3] M. Orlich. Miksei funktiota e−x2 voi integroida?
(Osa 1/2). Solmu 2/2025.
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Topologiasta ja matematiikan soveltamisesta

Marjatta Näätänen

Matematiikka on menetelmätiede, joka on aina ollut
vuorovaikutuksessa luonnontieteiden ja tekniikan kans-
sa. Näiden alojen ongelmat ovat johtaneet uusien mate-
maattisten teorioiden luomiseen, ja toisaalta hyvinkin
abstrakteille matemaattisille teorioille on, usein myö-
hemmin ja yllättäenkin, ilmaantunut sovelluksia. Mo-
derni, tekniikkaa laajasti käyttävä yhteiskuntamme pe-
rustuu matematiikalle – joka ei ole luonnontieteiden
ja tekniikan kaavakokoelma, vaan koko ajan kehittyvä,
itsenäinen tiede. Nykymatematiikan laaja-alaisuuden
vuoksi yliopisto-opetus perustutkintovaiheessa tyytyy-
kin tarjoamaan matemaattisen pohjan, jolta voi jatkaa.
Monien matemaatikkojen mielestä matematiikkaa tu-
lisi opettaa koulutasolla tuomalla esiin sen kauneus
ja sen tarjoamien älyllisten haasteiden mielihyvä. Tär-
keintä on kuitenkin oikean päättelytavan oppiminen –
tätähän tarvittaisiin yhteiskunnan kaikilla aloilla, po-
litiikasta alkaen, ongelmien kunnolliseen analysointiin.
Matematiikan opiskelu edesauttaa selkeän, järkevän ja
luotettavan ajattelutavan kehittymistä. Kuten lihaksia,
on aivojakin harjoitettava. ”Use it or lose it” pätee täs-
säkin.
Matematiikkadiplomin X tehtävissä1 pääset kurkista-
maan muutamiin sellaisiin matematiikan aloihin, ku-
ten lukuteoria, solmuteoria, kombinatoriikka, topolo-
gia, joihin koulukursseillasi tuskin törmäät.
Esimerkiksi topologiasta tarjottavat tehtävät ovat as-
kartelua. Toivottavasti ne herättävät kiinnostusta ja
poistavat valitettavan yleistä käsitystä, että matema-

tiikka on lähinnä luvuilla laskemista. Matematiikan yh-
tenäisyys tulee myös esille tehtävissä, joissa eri alat kie-
toutuvat toisiinsa ja ratkaisutavat voivat olla monen-
laisia.

Kiinnostuneille on reittejä jatkoon Solmunkin tiedosto-
jen avulla. Yksi esimerkki topologian käytöstä löytyy
Solmusta 1/20252, suomeksi yliopistotason oppikirjoja
on kirjoittanut mm. Jussi Väisälä.

Hyvin abstraktin teorian käyttömahdollisuuksia on
tutkinut prof. Eero Hyry, joka kuvailee seuraavassa ly-
hyesti tutkimustaan:

Tässä lyhyt yleistajuinen kuvaus topologisesta data-
analyysistä.

Big datan kasvava merkitys edellyttää myös uusia ma-
temaattisia menetelmiä sen käsittelemiseksi. Topologi-
nen data-analyysi on suhteellisen uusi matematiikan
osa-alue, joka hyödyntää algebrallista topologiaa datan
muodon tutkimiseen ja analysointiin. Topologia tut-
kii muotoja ilman tarkkoja mittauksia. Homologia on
algebrallisen topologian työkalu, jonka avulla voidaan
löytää datasta yhtenäisiä komponentteja, reikiä, onka-
loita ja näiden korkeampiulotteisia vastineita.

Topologinen data-analyysi on yllättävä käytännön so-
vellus algebralliselle topologialle, jota pidettiin ai-
kaisemmin täysin teoreettisena matematiikan osa-
alueena. Se soveltuu erityisesti korkeampiulotteisen ja
ei-lineaarisen datan tutkimiseen, ja pystyy näin usein

1https://matematiikkalehtisolmu.fi/2008/diplomi/diplomitehtavat10.pdf
2https://matematiikkalehtisolmu.fi/2025/1/talutushihna.pdf

https://matematiikkalehtisolmu.fi/2008/diplomi/diplomitehtavat10.pdf
https://matematiikkalehtisolmu.fi/2025/1/talutushihna.pdf
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havaitsemaan piirteitä, jotka jäävät perinteisiltä ti-
lastollisilta menetelmiltä piiloon. Topologisen data-
analyysin avulla voidaan dataa tutkia eri mittakaavois-
sa. Mittakaavan muuttuessa datan todelliset ominai-
suudet erottuvat kohinasta.
Tämä aihe on todellakin kiinnostanut tiedetoimittajia.
Esimerkkeinä
Precision Problem Solving: Topological Data Analysis
Driving Advances in Medicine and Biology | Depart-
ment of Mathematics
The Mathematical Shape of Things to Come | Quanta

Magazine

Ayasdi Analyzes Shape Of Big Data | InformationWeek

How Mathematicians Use Homology to Make Sense of
Topology | Quanta Magazine

Prof. Hyry on työskennellyt vain topologisen data-
analyysin teorian parissa. Mutta Tampereella 2021
väitellyt Henri Riihimäki, joka kirjoitti väitöskirjan
KTH:ssa ja sen jälkeen toiminut tutkijana Tukholmas-
sa ja Aberdeenissa, on soveltanut sitä biologisiin neu-
roverkkoihin.

https://math.oregonstate.edu/impact/2024/02/precision-problem-solving-topological-data-analysis-driving-advances-in-medicine-and
https://math.oregonstate.edu/impact/2024/02/precision-problem-solving-topological-data-analysis-driving-advances-in-medicine-and
https://math.oregonstate.edu/impact/2024/02/precision-problem-solving-topological-data-analysis-driving-advances-in-medicine-and
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Rahapeliongelma

Jukka Liukkonen
Mat. yo. evp.

Pythonin kanssa peliongelman kimp-
puun

Professori Daniel Litt tutkii leipätyönään algebrallis-
ta geometriaa Toronton yliopistossa. Hän kertoo löy-
täneensä hyödyllisiä välineitä toiselta matematiikan
osa-alueelta, lukuteoriasta. Vapaa-aikaansa Litt viet-
tää kolmannen matematiikan osa-alueen, todennäköi-
syyslaskennan parissa. Hän keksii huvikseen todennä-
köisyysprobleemoita, jotka johtavat ihmisen intuition
helposti harhaan. Tässä on yksi Littin probleemoista:

Kolikkoa heitetään sata kertaa. Alice saa pisteen aina,
kun kaksi kruunaa tulee peräkkäin. Bob saa pisteen ai-
na, kun kruunaa seuraa klaava. Eniten pisteitä kerän-
nyt pelaaja voittaa pelin. Kumpi on todennäköisempi
voittaja?

Siis hetkinen: kaikki neljä mahdollista kruunan ja klaa-
van järjestettyä paria ovat yhtä todennäköisiä, joten
Alice ja Bob saavat sadan heittokerran pelissä kumpi-
kin keskimäärin saman määrän pisteitä, ja tuo määrä
on 99/4 = 24,75, sillä sadan kolikon jonossa on vain 99
kolikkoväliä ja saman verran kahden peräkkäisen koli-
kon muodostamia pareja. Tällöinhän Alice on yhtä to-
dennäköinen voittaja kuin Bob? Varmistetaanpa asia
kirjoittamalla pieni kolikonheittoa simuloiva Python-
ohjelma.

No, Python-ohjelma kirjoitettiin, mutta siinä vaikut-
ti olevan jokin bugi, sillä onnetar suosi säännöllises-
ti Bobia, jolla voiton todennäköisyys oli aina kolmisen
prosenttiyksikköä suurempi kuin Alicella. Bugia ei sit-

keistä etsinnöistä huolimatta löydetty. Heräsi epäilys,
että vika on jossain muualla, esimerkiksi aritmeettis-
loogisessa yksikössä otsaluun takana. Hoksattiin tut-
kia miten käy, jos heittosarja on paljon lyhyempi, vaik-
kapa neljä heittoa? Oheisesta puukaaviosta, jossa H
tarkoittaa kruunaa (heads) ja T tarkoittaa klaavaa
(tails), nähdään huolellisesti katsomalla, että neljän ko-
likonheiton tapauksessa kaikista mahdollisista 16 pe-
listä Alice voittaa neljä ja Bob kuusi. Jäljelle jäävät
kuusi ovat tasapelejä. Python-ohjelma taisi olla kun-
nossa alun alkaenkin.

·

T

T
T T

H

H T
H

H
T T

H

H T
H

H

T
T T

H

H T
H

H
T T

H

H T
H



sisällysluetteloon

sisällysluetteloon

20 Solmu 3/2025

Peli ja peliavaruus

Kolikonheiton tulosjonoa mallinnetaan yhtä pitkällä
kirjainten H ja T muodostamalla jonolla. Alice saa
pisteen jokaisesta HH -esiintymästä ja Bob jokaisesta
HT -esiintymästä. Esimerkiksi kirjainjono HTTHHTH
vastaa erästä seitsemän kolikonheiton tulosjonoa. Siitä
tulee Alicelle yksi piste ja Bobille kaksi. Täydellisyy-
den vuoksi otetaan mukaan myös pelaajat Cheryl, joka
saa pisteen jokaisesta TH -esiintymästä, ja Dustin, jo-
ka saa pisteen jokaisesta TT -esiintymästä. Yleisyyttä
tavoitellen sovitaan, että kolikkoa heitetään n kertaa.
Tällöin puhutaan n -pelistä. Kaikkien mahdollisten n-
pelien joukkoa kutsutaan n-peliavaruudeksi. Pelaa-
jien nimet lyhennetään muotoon A, B, C ja D. Toi-
sesta heittokerrasta alkaen joku nelikosta saa pisteen
jokaisella heittokerralla.

Oheinen suunnattu verkko esittää pelin kulkua sen jäl-
keen, kun kolikkoa on heitetty kaksi kertaa. Verkon sol-
mujen nimet A, B, C ja D kertovat, kuka saa pisteen
kyseiseen solmuun tultaessa. Kaaret tai nuolet

AA, AB, BC, BD, CA, CB, DC, DD

vastaavat siirtymiä pelitilanteesta seuraavaan kolikon-
heiton myötä. Esimerkiksi tulosjonoa

HHTTHTTT

vastaa pelitilanne

ABDCBDD,

jossa Alicella ja Cherylillä on yksi piste kummallakin,
Bobilla on kaksi pistettä ja Dustinilla kolme pistettä.
Tulosjonot ja pelitilanteet vastaavat toisiaan kääntäen
yksikäsitteisesti. Huomaa, että kaikki kirjaimista A, B,
C ja D muodostetut jonot eivät edusta pelitilannet-
ta: esimerkiksi AC ei voi toteutua. Vain verkkokaavion
mukaiset jonot ovat pelitilanteita.

C

A

B

DH T

H

T T

H

T H

Kun verkon solmut kootaan matriisiksi

G =
[

A B
C D

]
,

kaikki kaaret saadaan neliöstä

G2 =
[

A B
C D

]2
=

[
AA + BC AB + BD
CA + DC CB + DD

]
,

mutta mikä parasta, kaikki n kolikonheittoa vastaa-
vat n − 1 kaaren reitit saadaan matriisipotenssista
Gn−1. Lukija voi tulla vakuuttuneeksi tästä laskemalla
potenssin G3 ja vertaamalla sitä verkkokaavioon. On
tärkeää huomata, että toistaiseksi matriisialkiot ovat
vain symboleja, joille tulon vaihdantalaki ei ole voi-
massa, joten laskutoimituksissa kannattaa olla huolelli-
nen. Symbolien tai symbolijonojen tulo tarkoittaa vain
niiden asettamista peräkkäin. Plusmerkki symbolijono-
jen välissä toimii erottimena, jolla kaksi jonoa erote-
taan toisistaan. Tällainen “yhteenlasku” on vaihdan-
nainen. Matriiseilla laskemisen säännöt voidaan tarvit-
taessa opiskella Wikipedian sivulta [6].
Huomautus. Merkkijonoilla laskeminen ei välttämät-
tä ole epämääräistä puuhastelua. Siitä tulee aivan oi-
keaa matematiikkaa, kun otetaan käyttöön vapaan al-
gebran käsite (ks. [4]). Nyt on kysymys aakkostos-
ta {A, B, C, D} muodostettujen merkkijonojen virittä-
mästä vapaasta Z-algebrasta.

Pelitilanteesta pistetilanteeseen

Pistelaskentaan päästään käsiksi korvaamalla vaihdan-
talakia noudattamattomat symbolit A, B, C ja D vaih-
dantalakia noudattavilla symboleilla a, b, c ja d mai-
nitussa järjestyksessä. Esimerkiksi Bobin pisteet peliti-
lanteessa ABDCBDD saadaan muodostamalla vastaa-
va pistetilannetermi ab2cd3 ja katsomalla symbolin b
eksponentti: sehän on kaksi. Siirtymällä pelitilanteista
pistetilanteisiin menetetään tieto siitä, missä järjestyk-
sessä pisteet ovat kullekin kertyneet. Pelimatriisin G
tilalle astuu tällöin pistematriisi

S =
[

a b
c d

]
.

Kaikkien mahdollisten 3-pelien pistetilanteet nähdään
matriisista

S2 =
[

a2 + bc ab + bd
ac + cd bc + d2

]
.

Matriisialkioiden summasta

1T S21 = a2 + bc + ab + bd + ac + cd + bc + d2,

missä
1 =

[
1
1

]
, 1T =

[
1 1

]
,

havaitaan Alicen saavan yhdestä pelistä keskimäärin
(2+0+1+0+1+0+0+0)/8 = 1/2 pistettä, ja Bobin
vastaava keskiarvo on (0+1+1+1+0+0+1+0)/8 =
1/2. Keskiarvojen yhtäsuuruus ei ole yllätys. Ensim-
mäisen kappaleen lukemisen jälkeen ei enää yllätä se-
kään, että Alice voittaa Bobin kahdessa pelissä, kun
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taas Bob voittaa Alicen kolmessa pelissä. Miten käy,
kun kolikkoa heitetään kolmen heiton sijaan sata ker-
taa? Tulosjonoja on aika monta. Niiden lukumäärä on
31-numeroinen kokonaisluku.
Huomautus. Siirtyminen pelitilanteista pistetilantei-
siin merkitsee siirtymistä vapaasta Z-algebrasta vastaa-
vaan polynomialgebraan Z[a, b, c, d] (ks. [7]).

Fokus Aliceen ja Bobiin

Kuten lukija varmaan jo huomasi, parivaljakoiden
(Alice, Bob) ja (Dustin, Cheryl) kesken vallitsee sym-
metria; toisin sanoen, kun verkkokaaviossa A ja D, B
ja C sekä H ja T vaihdetaan keskenään, kaavion infor-
maatiosisältö ei muutu lainkaan. Sama vaikutus, siis ei
vaikutusta ollenkaan, saadaan aikaan kiertämällä kaa-
viota 180◦.
Kun ollaan kiinnostuneita pelkästään Alicen ja Bobin
keskinäisestä taistosta, pistetilannetermeissä c ja d kor-
vataan ykkösillä. Silloin

S =
[

a b
1 1

]
, S2 =

[
a2 + b ab + b
a + 1 b + 1

]
,

ja kahden muuttujan a ja b pistetilannepolynomi saa
muodon

1T S21 = a2+b+ab+b+a+1+b+1 = a2+ab+a+3b+2.

Tästä riisutustakin versiosta nähdään Alicen ja Bobin
pisteet sekä heidän kaksintaistelussa voittamiensa pe-
lien määrät.
Huomautus. Kun c ja d korvataan ykkösillä, polyno-
mialgebra Z[a, b, c, d] samalla projisoidaan alialgebraksi
Z[a, b].

Fokus voitettujen pelien lukumäärään

Jos kiinnostuksen kohteena on pelkästään artikkelin
alussa mainittu kysymys siitä, kumpi on todennäköinen
voittaja, Alice vai Bob, pistetilannetermejä modifioi-
daan edelleen sopimalla, että ab = 1, jolloin tasapelit
redusoituvat ykkösiksi. Esimerkiksi peliin ABDCBDD
liittyvä pistetilannetermi ab2cd3, joka on jo degene-
roitunut muotoon ab2, pelkistyy sopimuksen jälkeen
pelkäksi alkioksi b. Tästä nähdään, että Bob voittaa
Alicen yhdellä pisteellä kyseisessä pelissä. Polynomi

1T S21 = a2 + ab + a + 3b + 2
= a2 + 1 + a + 3b + 2
= a2 + a + 3b + 3

kertoo meille, että kolmesta kolikonheitosta voi syntyä
kaikkiaan 8 = 12 + 1 + 3 · 1 + 3 = 23 (sijoita a = b = 1)
erilaista peliä. Niistä Alice voittaa yhden kahdella pis-
teellä (a2) ja yhden yhdellä pisteellä (a), kun Bob puo-
lestaan voittaa kolme peliä yhdellä pisteellä (3b). Alicen

ja Bobin keskinäisessä kisassa tasapelejä on kolme (3).
Degeneroitunutkin polynomi on täten sangen informa-
tiivinen.
Huomautus. Sopimus ab = 1 merkitsee, että polyno-
mialgebra Z[a, b] ensin projisoidaan polynomialgebrak-
si Z[a] ja sen jälkeen lokalisoidaan Laurentin polyno-
mialgebraksi Z[a, a−1] (ks. [5]).

Heittojen lukumäärä n + 1

Polynomi 1T Sn1 monimutkaistuu vauhdikkaasti, kun
n kasvaa. Sen aste kasvaa lineaarisesti, mutta kertoi-
met eksponentiaalisesti, minkä todistaminen jätetään
lukijalle. Esimerkiksi

1T S61 = a6 + a5 + 2a4 + 8a3 + 12a2

+ 18a + 30 + 32b + 19b2 + 5b3.

Tässä termit on kirjoitettu alkion a alenevien potens-
sien mukaan, kun otetaan huomioon sopimus eli yhtä-
lö ab = 1, jonka mukaan b = a−1 on alkion a kään-
teisalkio. Matriisipotenssien laskemista on mahdollista
helpottaa diagonalisoimalla. Menetelmään tarkemmin
puuttumatta todetaan, että matriisi S voidaan esittää
hajotelmana

S = P ΛP −1,

missä P −1 on matriisin P käänteismatriisi, so.

P P −1 = P −1P = I, I =
[

1 0
0 1

]
,

ja Λ on lävistäjämatriisi eli muotoa[
λ1 0
0 λ2

]
.

Silloin on voimassa

Sn = P ΛnP −1,

ja keskimmäinen matriisipotenssi on helppoa laskea,
sillä

Λn =
[

λn
1 0
0 λn

2

]
.

Lukija voi verifioida nämä kaksi yhtälöä harjoitusteh-
tävänä. Osoittautuu, että hajotelma S = P ΛP −1 to-
teutuu, kun lävistäjäalkioina ovat

λ1 = 1
2

(
a + 1 +

√
(a − 1)2 + 4b

)
,

λ2 = 1
2

(
a + 1 −

√
(a − 1)2 + 4b

)
,

ja kerroinmatriisit ovat esimerkiksi

P =
[

λ1 − 1 λ2 − 1
1 1

]
,

P −1 = 1
λ1 − λ2

[
1 1 − λ2

−1 λ1 − 1

]
.
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Tämänkin toteen näyttäminen normaaliin tapaan las-
kemalla jätetään lukijalle harjoitustehtäväksi.

Huomautus. Symbolien a ja b olemuksesta tiedetään
vain, että ab = 1. Ei ole tarkoituksenmukaista esitel-
lä uusia algebrallisia struktuureja aikaisemmissa huo-
mautuksissa esiteltyjen lisäksi, joten edellä mainittu-
jen neliöjuurten olemus ja olemassaolo jäävät hämä-
rän peittoon. Kun tavoitteena on matriisitulon 1T Sn1
esittäminen kokonaislukukertoimisena polynomina, ja
neliöjuuret lopulta supistuvat lausekkeista pois, tällai-
nen formaali eli muodollinen kaavojen pyörittely näh-
täköön pelkästään keinona päästä lopputulokseen. Me-
nettely voidaan hyväksyä ainakin silloin, kun lopputu-
loksen pätevyys on mahdollista verifioida laillisin kei-
noin. Monesti jonkin lausekkeen keksiminen on hyvin
vaikeaa, mutta kun lauseke lopulta tavalla tai toisella
keksitään, sen todistaminen päteväksi esimerkiksi in-
duktiolla on hyvin yksinkertaista. Sitä paitsi: eikös jo-
ku ole joskus sanonut, että “tarkoitus pyhittää keinot”.

Yleiseen (n+1)-peliin liittyvän tehtävän ratkaisun vai-
keus piilee siinä, että potenssien λn

1 ja λn
2 ja lopulta

polynomin 1T Sn1 laskeminen johtaa monimutkaisiin
lausekkeisiin. Kun kyseinen polynomi on jollain keinol-
la saatu laskettua, se voidaan esittää kanonisessa muo-
dossa

p(a, b) =
I∑

i=1
αia

i + γ +
J∑

j=1
βjbj .

Tasapelien lukumäärä on

p(0, 0) = γ.

Alicen ja Bobin voittamien pelien lukumäärät ovat vas-
taavasti

p(1, 0) − γ =
I∑

i=1
αi ja p(0, 1) − γ =

J∑
j=1

βj .

Huomautus. Nollan sijoittaminen muuttujan a tai b
paikalle saattaa tuntua oudolta, kun muistetaan sopi-
mus ab = 1. Idea on siinä, että tuota sopimusta käy-
tetään saatettaessa polynomin lauseketta edellä esitet-
tyyn kanoniseen muotoon. Tämän jälkeen on enää ky-
symys polynomin kertoimista ja niiden summista. Jos
ne saadaan selville sijoittamalla nolla muuttujan pai-
kalle, tälle polynomin syntyhistoriaan nähden laitto-
malle sijoitukselle ei ole mitään estettä. Kun kanoni-
sointiin liittyvät laskut ovat vielä kesken, nollan sijoit-
taminen muuttujan paikalle johtaa väärään lopputu-
lokseen. Esimerkiksi jos yhtälöketjun

(a + b)2 = a2 + 2ab + b2 = a2 + 2 + b2

ensimmäiseen yhtälöön sijoitetaan a = b = 0 vakio-
termin paljastamiseksi, saadaan väärä tulos 0. Sijoitus
sopii tehdä vasta loppuun asti laskettuun kanoniseen
muotoon. Silloin saadaan oikea tulos 2.

Eräs keino mutkikkaiden lausekkeiden hallitsemiseksi
on käyttää laskentaan jotakin symbolisen laskennan
ohjelmistoa. Näin on tehty mm. artikkelissa [1], vaik-
kakin eri lähtökohdista kuin edellä esitetty. Symboli-
sen laskennan lisäksi todistusvoimaa saadaan komplek-
sianalyysista kuten artikkelissa [3]. Itse asiassa poly-
nomi p(a, b) voidaan kirjoittaa vastaavaksi kompleksi-
muuttujan z Laurentin sarjaksi

L(z) =
I∑

i=1
αiz

i + γ +
J∑

j=1
βjz−j ,

joka tässä tapauksessa, kun termejä on vain äärellinen
määrä, on pelkkä Laurentin polynomi. Jos funktion L
lauseketta ei tunneta sarjamuodossa, sarjan tuntemat-
tomat kertoimet saadaan joskus selville kompleksista
integrointia käyttäen. Vaikka se ei onnistuisikaan, in-
tegraalit saattavat kuitenkin kertoa jotain oleellista in-
formaatiota kertoimista.

Tuloksia

Vaikka kolikonheittoprobleema johtaa pitkiin laskui-
hin, sitä on hyvin helppoa tutkia kokeellisesti. Sadan
heiton kisaa Alicen ja Bobin välillä simuloitiin tätä ar-
tikkelia varten yksinkertaisella Python-ohjelmalla, joka
käytti heittotulosten arpomiseen satunnaislukugene-
raattoria. Kymmenestämiljoonasta pelistä Alice voit-
ti 4 574 682, Bob voitti 4 859 895, ja tasapelejä tuli
565 423 kappaletta. Tämän kokeen valossa Alice voittaa
pelin noin 45,7 %:n todennäköisyydellä, Bob voittaa
noin 48,6 %:n todennäköisyydellä, ja peli päättyy tasan
noin 5,7 %:n todennäköisyydellä. Artikkelissa [1] las-
ketut teoreettiset arvot ovat vastaavasti 0,4576402592,
0,4858327983 ja 0,0565269425.
Eräs kollega laski Mathematica-ohjelmalla polynomin
p(a, b) = 1T S991 arvot p(1, 0), p(0, 1) ja p(0, 0), kun

S =
[

a b
1 1

]
,

ja sai sitä kautta selville, miten monta 2100:sta mah-
dollisesta pelistä päätyy Alicen tai Bobin voittoon tai
tasapeliin:

Bob voittaa 615 866 238 418 960 422 359 689 555 420
Alice voittaa 580 127 949 239 420 834 381 088 427 404

Tasapeli 71 656 412 569 848 144 755 925 222 552
Yhteensä 1 267 650 600 228 229 401 496 703 205 376

Artikkelissa [3] todistetaan, että Bob voittaa n-pelin
todennäköisemmin kuin Alice, kun n ≥ 3. Toisin sa-
noen Bob voittaa suuremman osan n-peliavaruuden
peleistä kuin Alice, kun n ≥ 3. Artikkelissa todis-
tetaan myös, että kumpikin todennäköisyys lähestyy
raja-arvonaan lukua 1/2, kun n kasvaa rajatta, ja to-
dennäköisyyksien erotus

P
(
{Bob voittaa}

)
− P

(
{Alice voittaa}

)



sisällysluetteloon

sisällysluetteloon

Solmu 3/2025 23

vieläpä käyttäytyy asymptoottisesti kuin

1
2
√

nπ
+ O

(
n−3/2

)
.

Pohdintaa

Alicelle pisteen tuovia pareja HH on tasan yhtä mon-
ta kuin Bobille pisteen tuovia pareja HT, kun kaikki
n-pelit otetaan mukaan laskentaan. Siksi on ehkä yl-
lättävää, että Bob kuitenkin voittaa suuremman osan
yksittäisistä n-peleistä kuin Alice. Koska tarkastelu kä-
sittää koko peliavaruuden, mukana ovat myös sellaiset
pelit, joissa Alice saa yli n/2 pistettä. Tällaisiin pelei-
hin sisältyvät Alicen pisteet ovat poissa muihin peleihin
sisältyvistä Alicen pisteistä. Bobin sen sijaan on mah-
dotonta saada yhdestäkään pelistä enempää kuin n/2
pistettä. Näin ollen Bobin pisteet ovat tasaisemmin ja-
kautuneet n-pelien kesken. Kärjistäen voidaan sanoa,
että Alice voittaa pienen määrän pelejä isolla pistemää-
rällä, jolloin Bob saa tilaisuuden voittaa suuren mää-
rän pelejä pienellä pistemäärällä. Tällainen heuristiik-
ka tukee Bobin onnekkuutta, mutta kokonaan toinen
asia on siihen pohjautuvan todistuksen kirjoittaminen,
jos se ylipäänsä on mahdollista.

Daniel Litt haluaisi nähdä Bobin onnekkuudelle todis-
tuksen, jossa intuitio ei peittyisi teknisten yksityiskoh-
tien taakse. Joskus todistukset ovat sellaisia, että väite
kyllä putkahtaa monimutkaisen päättelyketjun ja hir-
muisten laskelmien jälkeen ulos, ja kaikki pystyvät ve-
rifioimaan todistuksen päteväksi vaihe vaiheelta, mutta
kukaan ei oikeastaan ymmärrä, mitä todistuksessa ta-
pahtuu. Littin probleema yleiselle n-pelille on sen luon-
toinen, että joku aiheesta kiinnostunut nuori opiskeli-
ja, jolla ei vielä ole kokemuksen painolastia harteillaan,
saattaisi onnistua keksimään omintakeisen ratkaisun,
johon urautuneiden ammattilaisten mielikuvitus ei ole

riittänyt. Quanta Magazine -verkkolehdessä [2] on pro-
fessori Littin haastattelu.
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Ympyrän neliöiminen

Reijo Hautakangas

Tarkastellaan kysymystä siitä, voidaanko piirtää ne-
liö, jonka pinta-ala on sama kuin annetun ympyrän
pinta-ala. Neliön sivun pituuden pystyy tietenkin las-
kemaan helposti. Sen sijaan harpilla ja viivaimella täl-
laista neliötä ei voi piirtää, sillä esimerkiksi yksikköym-
pyrää vastaavan neliön piirtäminen edellyttäisi erään
transkendenttiluvun mittaisen pituuden konstruoimi-
sen harpilla ja viivaimella. Sen sijaan likiarvoratkaisuja
voi tehdä harpilla ja viivaimella.

Voidaan esimerkiksi löytää niin tarkka ratkaisu, että
kun otetaan huomioon harppiviivainmenetelmän luon-
tainen piirustusepätarkkuus, niin itse ratkaisumenetel-
män epätarkkuus ei juuri huononna tulosta.

Lähdetään aluksi ratkaisemaan toista tehtävää: Neliön
ympyröiminen. Tämäkin on mahdotonta ratkaista tar-
kasti harpilla ja viivaimella, sillä tämänkin ratkaise-
minen antaisi transkendenttiluvun mittaisen pituuden
konstruktion. Neliön ja ympyrän pinta-alojen yhtäsuu-
ruus on tavoitteena tässäkin.

Jaetaan piirretty neliö aluksi kuuteentoista ruutuun.
Ruudun sivun pituus on 1. Kuvaan piirretään ympyrä
neliön keskipisteeseen. Sen säteeksi otetaan

√
5 kuvan

mukaisesti. Ympyrän ja neliön leikkauspisteiden kaut-
ta kulkevat sädesuorat lisätään kuvaan (niiden ja ne-
liön sivujen väliset kulmat määräävät ympyrän ja ne-
liön pinta-alojen suhteen).

Neliön pinta-ala on

s2 = 42 = 16

ja ympyrän

πr2 = π(
√

5)2 = π5 = 15,70 . . .

Pinta-alavirhesuhde on

16/15,70 . . . = 1,018 . . .

ja viivavirhesuhde√
1,018 . . . = 1,0092 . . .

Ympyrän säde on siis hiukan liian lyhyt (< 1 %).
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Nyt voidaan lähteä ratkomaan alkuperäistä tehtävää:
ympyrän neliöiminen.

Siirretään neliöitävä ympyrä samaan keskipisteeseen
edellisen tehtävän ympyrän kanssa. Sädesuorien kanssa
syntyy 8 uutta leikkauspistettä, jotka määrittävät piir-
rettävän uuden neliön sivut. Neliöitävän ympyrän sä-
teeksi merkitään 1 ja uuden neliön sivuksi ≈

√
π. Nämä

uudet tekstit ja viivat voidaan piirtää leveämpinä tai
erivärisinä, jotta ne erottuisivat vanhasta kuviosta.

Käytännössä näiden kuvioiden piirtäminen on huomat-
tavan yksinkertaista ruutupaperia käyttäen, mitä harp-
piviivainmenetelmä ei kuitenkaan salli. Tällöin voitai-
siin käyttää sädesuorien tangentille tarkempia koko-
naislukujen (ruutujen) osamääriä kuin tuo 1/2, joita
löytyykin runsaasti. Esimerkiksi 23/44 on jo turhan-
kin tarkka. Oikea arvo on

√
(4 − π)/π (= 0,52272. . . ),

josta neliön sivujen ja sädesuorien väliseksi kulmaksi
saadaan 27,597 . . .◦. Tässä ratkaisussa neliön sivu on
kuitenkin hiukan liian pitkä (< 1 %).
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Laaja-alainen	projektiosaaminen	matematiikan	opetuksessa	
	
Matematiikkalehti	 Solmun	 matematiikkadiplomien	 tehtävistä	 kerättyjä	 tehtäväpaketteja	 voi	
käyttää	 laaja-alaisen	 osaamisen	 opetuksessa.	 Eri	 aihepiireihin	 liittyviä	matematiikan	 tehtäviä	
ratkomalla	oppilaat	huomaavat,	että	matematiikan	osaamista	tarvitaan	monissa	eri	yhteyksissä.	
Matematiikan	 kumuloituva	 rakenne	 vaatii	 ennen	 matemaattisten	 työkalujen	 käyttöä	 aineen	
sisäistä	 (eli	 vertikaalista)	 eheyttämistä,	 vasta	 tämän	 jälkeen	 voidaan	 pyrkiä	 eri	 oppiaineiden	
väliseen	 (horisontaaliseen)	 eheyttämiseen.	Tarvittavien	matematiikan	 sisältöjen	on	 siis	 oltava	
hallinnassa	ennen	niiden	käyttöä.	Opettajan	ratkaistavaksi	jää	eri	oppiaineiden	erilainen	etene-
mistahti,	 esimerkiksi	 käsite	 mittakaava	 voi	 tulla	 esille	 maantiedossa	 eri	 luokka-asteella	 kuin	
matematiikassa.	
	
Käytettävissä	on	10	tehtäväpakettia.	Alla	annetaan	neljästä	paketista	esimerkkejä	niiden	sisäl-
löistä.	Tehtävät	voi	tulostaa	Matematiikkalehti	Solmun	(matematiikkalehtisolmu.fi)	Matematiik-
kadiplomi-sivulta	ja	pyytää	vastaukset	osoitteesta	juha.ruokolainen(at)yahoo.com	
	
Koululle	ei	aiheudu	muita	kuin	mahdollisia	monistus/tulostuskustannuksia.	
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ringon	 ja	 vetyatomin	 välissä.	 Matemaattisia	 sisältöjä:	 suuruussuhteet,	 mittakaa-
va,	etäisyydet,	myös	pallolla,	maapallon	pyöriminen,	projektio,	suuret	luvut.)		

− Suomen	historia	 (Sisältöjä:	väkiluvun	kehitys	keskiajalta,	kaupungit,	kansakoulu,	tytöt	
ja	 pojat	 opetuksessa,	 taiteilijoita,	 radioaktiivinen	hajoaminen,	 Pisa-tulokset.	Matemaat-
tisia	sisältöjä:	ajan	yksiköt,	prosenttilaskenta	ja	prosenttipisteet,	kaavioiden	laatiminen	
ja	tulkitseminen,	lineaarinen	approksimaatio,	murtoluvut,	päättely.)	

− Terveys	 ja	 ravinto	 (Matemaattisia	 ym.	sisältöjä:	 suhteet,	 prosentit,	 perusaineenvaih-
dunta,	 liikkuminen,	painoindeksi,	 energian	 tarve,	kalorit,	 ajankäyttö,	 lääkeannostus,	 al-
koholi	ja	hormonit)	

− Talous	 (Sisältöjä:	 kauppa-	 ja	 hinnanalennuslaskuja,	 remonttikustannuslaskuja,	 brutto-	
ja	 nettopalkka,	 verotus,	 korot,	 pörssi,	 valtion	 budjetti,	 luonnonvarojen	 tuottavuus	 eri	
EU-maissa)	
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