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Miksei funktiota e~ voi integroida? (Osa 2/2)

Milo Orlich
milo.orlich@alumni.aalto.fi

Tamé on artikkelin [3] jatko. Téssé osassa todistetaan
Liouvillen lause. Taté lausetta ja Lausetta 29 lukuun
ottamatta artikkelin ensimmaéaisen osan tuloksia ja ma&-
ritelmié ei toisteta.

Jatkossa kéytetddn seuraavaa notaatiota.

Madaritelma 1. Jos laajennusta K(o) halutaan laa-
jentaa lisid alkiolla (8, niin merkinndn K(a)(B) sijaan
kirjoitetaan K(a, ). Ja samoin jos on monta alkiota
at, ..., Qp, kirjoitetaan K(aq, ..., ap).

Toistetaan Liouvillen lauseen (eli artikkelin ensimmaéi-
sen osan Lauseen 29) viite:

Lause 2 (Liouville). Olkoot K derivaatan suhteen sul-
jettu kunta meromorfisia funktioita ja o € K. On ole-
massa kunnan K alkeislaajennus I ja sellainen y € L,

ettd y' = «, jos ja wvain jos on olemassa sellaiset
UL, ...y Up, v € K jacy,...,c, € C, eltd
n ul
4 i
a= c— +v. 1
2 “u; @
i=

Liouvillen lauseen muoto on ”jotain < jotain”, joten
pitéa todistaa, ettd implikaatio patee molempiin suun-
tiin. Aloitetaan yksinkertaisemmasta implikaatiosta.

Implikaation 7<7 todistus. Oletetaan, ettd on olemas-
sa sellaiset uy,...,u,,v € Kjacy,...,c, € C, ettd yh-
talo (1) patee. Jos on olemassa sellaiset ig € {1,...,n}

jaa €K, ettd

niin madritellidn v := v + ¢;,a. Jos tdmé tapahtuu
uudelleen, niin méaritellddn v kunnan K alkioiden de-
rivaattoja vastaavien yhtdlon (1) termien summaksi.
Voidaan siis olettaa, ettd jokaisella indeksilla 7 ei ole
olemassa sellaista a € K, ettd u}/u; = o'. Liséksi voi-
daan olettaa, ettd vélissé I, jossa v ja kaikki funktiot u;
on médritelty, patee u;(z) # 0 jokaisella alkiolla « € T
ja indeksilld ¢ € {1,...,n}, tai muuten otetaan osavili
JCI.

Maééritellddn nyt a; := logu; jokaisella i € {1,...,n}.
Voidaan olettaa, ettd a; ¢ K(aq,...,a;—1), tal muuten
a; yksinkertaisesti ohitetaan. Sitten L := K(ay, ..., ay)
on kunnan K alkeislaajennus. Koska kaikki funktiot a;
sekd v kuuluvat kuntaan L, saadaan my0s

n
Y= Zciai + v eL.
i=1

Derivoimalla tamé saadaan

n n /
r_ / r_ U [
Yy = cia; +v = c;i— +v = .
Us
i=1 i=1 v
O

Huomautus 3. Jos etsitddin integraalifunktiota kun-
nan K wulkopuolelta, ainoa mahdollisuus saada se on
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lisaamalld adrettémdan monta logaritmifunktiota! Esi-
merkiksi rationaalifunktiolla % ei ole integraalifunk-
tiota kunnassa C(x), mutta kylla on laajennuksessa
C(z)(Inz) = C(z,Inz).

Liouvillen lauseen implikaation ”=" todistus tulee ole-
maan melko pitka ja tehddén eri tapauksissa. Ensin ke-
ratddn paljon apulauseita seuraavassa luvussa. Liouvil-
len lauseen implikaation ”=>" todistus alkaa sivulla 12.
Todistus jatkuu eri tavalla riippuen siitéd, onko kysees-
sé oleva funktio transkendenttinen eksponenttifunktio
(niin kuin kirjoituksen otsikossa) vai algebrallinen.

Todistuksen perusainekset

Tehtava 4. Tarkista, ettd seuraava yhtdlo pitdd paik-

Y A A S
o fn fi
Y I T T @
Tulemme kdyttamdadn sitd ja erikoistapausta
o) _ 1 ¢
==+ = 3
fo 7 g ®)

pari kertaa jatkossa.

Meromorfisen funktion poolit

Maaritelma 5. Olkoot f ja g holomorfisia funktioita

jossain kompleksitason avoz’messa osajoukossa U. Me-
( )

romorfisen funktio
tion g nollakohdat.

Huomautus 6. Ainoa poolien sovellus, jota kdytim-
me jatkossa, on siind tapauksessa, ettd kyseessd oleva
meromorfinen funktio on rationaalifunktio eli kahden
Oletetaan ettd P ja Q ovat

polynomm 0samdaard Q (

P(z) _ P(z)

Qr)  wlw—z)n(x—2)%2- (= 2,)0
Tassa zy, ...,z ovat eri kompleksilukuja, w € C
ja ay,...,a, ovat positiivisia kokonaislukuja. Tietysti

P(z) # 0 kaikilla i. Sanotaan, ettd z; on funktion E‘%

a;-kertainen pooli, toisin sanoen poolin z; kertalu-
ku on a;. Huomaamme nyt, ettd rationaalifunktion de-
rivaatta on sekin rationaalifunktio, ja sen poolien ker-
taluvut ovat valttamdttd > 1: jos siis kirjoitetaan

P f)
Qz)  (z—z)’
jossa rationaalifunktio f(x) sisdltida kaikki muut termit
(x — 2;)%, niin
d P(z)  (z—2)%"f'(z) —ai(z — z)"~
dx Q(x) (x — z;)%
_ (@—2)f(x) —aif(x)

N (x — z;)@t! ’

()

etkd z; ole viimeisen osoittajan nollakohta.

Transkendenttisuudesta

Lemma 7. Olkoon « transkendenttinen alkio ja olkoot
P ja Q kaksi eri polynomia. Tdlloin P(a) # Q(«).

Todistus. Jos P(a) = Q(«), niin « on polynomin P—Q
juuri. Transkendenttisuuden takia tdmaé tarkoittaa, et-
td P — @ on nollapolynomi, eli P = Q. O

Lemma 8. Olkoon g(z) € C(x) rationaalifunktio, joka
ei ole vakio. Tdllgin funktio e9%) on transkendenttinen
kunnan C(x) suhteen.

Todistus. Oletetaan, ettd e9 on algebrallinen kunnan
K := C(z) suhteen. Silloin on olemassa sen minimipo-
lynomi

P=X"4f, 1 X" "4+ AX + fo € K[X].

Derivoidaan yhtdlo P(e?) = 0 eli

"+ fuo1€I 4t fre 4 fo =0

saaden

ng/eng+ (fn L +(n_1)fn 19) (n—1)9+
+(fi +9' fr)e?+fo = 0.

On siis olemassa toinen n-asteinen polynomi, jonka ar-
vo funktiolle €9 on nolla. Téméa on valttamatta poly-
nomin P kerrannainen, ja korkeimman ja pienimmén
asteen kertoimet ovat verrannolliset:

5

Jo
Kirjoitetaan rationaalifunktio fo € C(z) osoittajan ja
nimittdjan tulona lineaarisia, pareittain erillisia tekijoi-
ta:

(4)

ng

m

fo=[J@==)", meN, zeCz), o € Z\ {0}.

i=1
Sen derivaatta on

1 :[al(x — )M Nz — 29)%2 (T — 2™

+ [om (@ — 20)* (@ = 2pe1) " (T — 2

Huomaamme nyt, ettd oikealla puolella olevan funk-
tion poolien kertaluku on 1, kun taas ng’ on rationaa-
lifunktion derivaatta, jonka poolien kertaluku on aina
suurempi kuin 1 (ks. Huom 6). TAm4 on ristiriita. O
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Osamurtokehitelméa

Seuraava apulause on se, jota kdytetddn eniten Liouvil-
len lauseen todistuksessa. Siinéd tapauksessa, ettd ky-
seessi oleva funktio on transkendenttinen (niin kuin
artikkelin otsikossa), kéytetddn pelkéstddn seuraavaa
lausetta.

Lause 9. Olkoot K kunta ja f € K(X) rationaalifunk-
tio, jonka nimittdji ei ole vakio. Tdlléin on olemassa

e luonnollinen luku N € Z~yg,

e N pareittain  erillistd  jaotonta  polynomia
Wi,...,Vn € K[X], joiden korkeimman asteen ter-

min kerroin on 1,
o N luonnollista lukua my,...,my € Z~o,

o jokaisilla i € {1,...,N} ja k € {1,...,
mi Sk, € K[X], jolle deg Sk; < degV;,

m;}, polyno-

« polynomi Sy € K[X]

siten, etta
N m;

zlkli

Todistus. Kirjoitetaan f = P/Q, missd P,Q € K[X]
ovat keskenddn jaottomat ja deg @ > 1. Olkoon

Q=VyVy VR

alkutekijahajotelma (eli V; # Vj, ja kaikki V;:t ovat
jaottomat). Jos N = 1, niin funktio on jo yhtdlon (5)
muodossa. Jos N > 1, polynomit V}"* ja

Q;:V2V2...

ovat keskenddn jaottomat. Bézout’'n yhtalon (ks. artik-
kelin osa 1) mukaan on olemassa S,T € K[X] siten,
etta SV +TQ = 1. Nyt voidaan kirjoittaa

vN
VN

P PSV*+TQ) PS PT

f:é: ‘/IVIQ = Q Vvlylv

missd jalkimmaisen yhteenlaskettavan nimittdja on
jaottoman polynomin potenssi. Jos N — 1 > 1, tois-
tetaan sama prosessi, jolloin saadaan

PT
‘/11/1 )

f—*—|- *
_é ‘/2”2

missé, é = V3% ... V¥ japikku téhdet esittavit sopivia
polynomeja. Aérellisen monen askelen jilkeen saadaan

Ry
= L ... 5
f Vll/1 + VUN Vu, ( )
joillain polynomeilla R;,...,Ry € K[X]. Mikali

deg R; > degV; tietylld indeksilld ¢, Eukleideen algo-
ritmin avulla saadaan sellaiset Q; ja 5;, ettd R; =

Q:Vi + S; ja degS; < degV;. Silloin summan (5) i:s
yhteenlaskettava voidaan kirjoittaa muotoon

R,  QiVi+Si = Qi + Si
‘/;Vi - V'Zl/q - V;Vi_l ‘/lm

Mikéli deg(Q;) > deg(V;), sama prosessi toistetaan,
kunnes

R, <L S

7S02 Z . (6)
i k>’
Vi Vi

missd deg Si; < degV; jokaisella k € {1,...,m;}.

Lopuksi, mikéli polynomin V; korkeimman asteen ter-

min kerroin on a # 1, voidaan mééritella V; := % ja
S;”» = S’“'. Talloin polynomin V; korkeimman asteen

Sk,i _ Sk
i 0

termin kerroin onkin 1, ja Vk =5

Esimerkki 10. FEdellistd lausetta kdytetdidn jatkossa
“teoreettisena” tuloksena, emmekd ole kiinnostuneita
erityisistd rationaalifunktioista. Voi olla kuitenkin hyo-
dyllistd kdydd todistus ldpi ymmdrtddksesi, miten se
toimii. FEsimerkiksi siind tapausessa, ettd annettu ra-
tionaalifunktio on g = ;Tfl, niin N =1 ja ainoa ni-
mittdjin jaoton tekijé on Vi = x + 1. Voit tarkistaa,
ettd lauseen todistus tuottaa osamurtokehitelmdn

2 (2 —141)(z+1) 1
r+1 z+1 rz+1

1
=2 —rx+1- ——
r+1
Tdmd onkin helppo rationaalifunktio. Voit kokeilla itse
vatkeampia esimerkkejd.

Polynomin juuret

Alkio r on polynomin P juuri, jos P(r) = 0. Toisin
sanoen 1 on polynomiyhtélén P(z) = 0 ratkaisu. Al-
gebran péddongelma on l6ytad téllaisia juuria. Jos ker-
roinjoukko on liian pieni, on vaikeaa 16ytéda niité, joten
joukkoa laajennetaan:

e Polynomilla X + 1 ei ole juurta joukossa N, mutta

silld on juuri —1 joukossa Z.

e Polynomilla 2X — 1 ei ole juurta joukossa Z, mutta

silld on juuri % joukossa Q.

« Polynomilla X? — 2 ei ole juurta joukossa Q, mutta

silld on juuri v/2 joukossa R.

o Polynomilla X2 + 1 ei ole juurta joukossa R, mutta

silld on juuri ¢ joukossa C.

Kuten nidimme, Q C R C C on ketju kuntalaajennuk-
sia. Juuri tdmén takia kuntalaajennuksia tutkitaan: ha-
luamme laajentaa kuntaa niin, etta juuria l6ytyy. Huo-
maa, ettei tarvitse ottaa kuntaa R juuren 16ytamiseksi
polynomille X% — 2 € Q[X]: laajennus Q(1/2) riitti.
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Lause 11 (algebran peruslause). Jokaisella epdvakiol-
la polynomilla P € C[X] on jokin juuri joukossa C.

Itse asiassa tata lausetta voi kdyttda todistamaan, et-
td m-asteisella kompleksikertoimisella polynomilla on
tdsmélleen m juurta, jos lasketaan kertalukuja. Toisin
sanoen, m-asteinen polynomi P € C[X] voidaan kir-
joittaa tulona lineaarisia termejé

PX) = (X = 2)(X = z2) - (X — zm),

missé jotkut juuret z; € C voivat toistua. (Vaikka edel-
listd lausetta kutsutaan ”peruslauseeksi”, se ei ole mi-
kddn triviaali tulos.) Taméi seuraa edellisesti lauseesta
ja siitd, ettd r on polynomin P juuri jos ja vain jos
X — r jakaa polynomin P, eli P = (X — r)Q jollakin
polynomilla Q. (Ks. kirjan [2] Lause 22.9.)

Maaritelma 12. Olkoot P polynomi ja r sen juuri.
Juuren r kertaluku on korkein n, jolle (X —r)" jakaa
polynomin P, eli korkein n, jolle voidaan kirjoittaa

P=(X-r)"Q,

jossa Q(r) # 0.

Lemma 13. Polynomille P € C[X] seuraavat ehdot
ovat yhtapitdvadt:

o kaikkien P:n juurien kertaluvut ovat =1,

e P ja P’ ovat keskenddn jaottomat.

Todistus. Oletetaan, ettd polynomilla P on juuri r, jon-
ka kertaluku on n > 1. Talléin P(X) = (X —r)"Q(X)
jollain sopivalla @, jolle patee Q(r) # 0. Talléin

—)"Q'(X),

joten P’(r) = 0. Tama4 tarkoittaa, ettd X —r jakaa my0s
polynomin P’. Jos sen sijaan n = 1, niin P’(r) # 0, eli
r ei ole derivaatan juuri. Mutta koska polynomin P

P'(X) =n(X —r)"71Q(X) + (X

rien kertaluvut ovat = 1, niin P ja P’ ovat keskendan
jaottomat. [

Olkoon m € Zsg. Kirjoittamalla jatkossa C; tarkoi-
tamme, ettd karteesiselle tulolle C™ = C x - - - x C ote-
taan koordinaatit (wi,...,ws,,). Seuraavakin lause on
melko kuuluisa.

Lause 14 (Implisiittisen funktion lause). Olkoot
m,n € Zsg ja A tulon C*"t™ = C? x C™ avoin joukko.
Olkoon F = (Fy,...,F,): A — C™ holomorfinen funk-
tio. Olkoon (2°,w%) = (29,..., 20, w9, ... w0 € A sel-
lainen piste, etti F(2°,w®) = 0 ja Jacobin matriisi sii-
nd pisteessd, eli

AF1 (2°,w?) . AF, (2°,w?)
0z1 0z
: : :
AF (2°,w°) AF, (2°,w?)
Ozn Ozy,

on kddntyvi. Tdlloin on olemassa pisteen 20 € CP
avoin ympdristé U, pisteen w® € C™ avoin ympdris-
to V ja holomorfinen funktio h: V — U siten, ettd

e UxV CA,

o F(h(w),w) =0 kaikilla w € V,

o h(w®) = 2°.

Lause 15. Olkoon K kunta meromorfisia funktioita re-
aalivilissi I ja olkoon P € K[X] m-asteinen jaoton po-

lynomi. Tdlloin jollekin osavdlille J C I on olemassa
sellaiset pareittain erilliset meromorfiset funktiot

Fiveeiifm: J = C,
ettd P(f;) =0 jokaisellai=1,...,m.
Todistus. Olkoon
Q) =2™ + 1™+ + 11 + o € Cla]

sellainen polynomi, jolla on m parittain erillistd juurta

21, - -+, 2m € C. Lemmasta 13 seuraa, ettd polynomeilla
Q ja
m
Q' (z) = Z icir' ™!
i=1

ei ole yhteisia tekijoité, joten Q’(z;) # 0 kaikilla 7. M&&-
ritelldédn holomorfinen funktio

F:Ccmt > C,

(z, a0, .. 1

m—1) = 2"+ a1+ -+ a1z + ag.

Haluamme nyt kiyttda Lausetta 14, ja padtelliksemme
Jacobin matriisin kddntyvyyden riittdd huomata, etta

or ) = Q(z) £ 0

% (Zi, Co, - -
jokaisella ¢ € {1,...,m}. Kéytdmme Lausetta 14
m kertaa, yhden kerran jokaisella z;. On olemassa pis-
teen (cg, . .., Cm—1) avoin ympéristé V' C C™, pisteiden
z; avoimet ymparistot U; C C ja m holomorfista funk-
tiota h;: V' — U; niin, etté

o jokaisella (ag,...,am-1) €V

F(hi(a'07 cee 7af’m—1)a ag, - - -, a?n—l) = 07

eli hi (ao, . >am71) on polynomin wm-i-am,la:m_l +
-+« + ag juuri;
e hi(co,. .., Cm—1) = 2 jokaisella i € {1,...,m}.
Olkoon nyt

P(X) = igiXi € K[X]
=0

polynomi kuten lauseen viitteessé. Voimme olettaa, et-
td kaikki funktiot g; ovat maaritellyt vélissa I, tai muu-
ten otetaan sellainen osavéli. Voimme my0s olettaa, et-
té funktio g,, ei ole koskaan nolla vélissd I. Toisin sa-
noen, voimme jakaa funktiolla g,,, tai itse asiassa olet-
taa alusta alkaen, ettd polynomin P korkeimman as-
teen termin kerroin on g,, = 1.
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Jokaisella reaaliluvulla ¢t € I méaritelladn polynomi

m

Py(x) = Zgi(t)xi € Clz].

=0

Etsimme sellaisen g € I, ettd polynomilla P, on m pa-
rittain erillistd juurta. Koska P on jaoton, P ja P’ ovat
keskendén jaottomat. Bézout’n lauseen mukaan (ks. ar-
tikkelin osa 1) on olemassa sellaiset S, T € K[X], ettd

SP+TP =1. (7)

Voimme olettaa, ettd polynomien S ja T kaikki kertoi-
met — jotka ovat kunnan K alkioita, eli funktioita —
ovat madaritellyt vélissa I, tai muuten otetaan osavali.
Jokaisella ¢ € I voimme siis mééritelld polynomit P},
St ja Ty samalla tavalla kuin polynomin P;. Yhtélosta 7
saamme yhtalon

StPt—f—TtPt/:l,

joka pétee renkaassa Clz]. Tésta seuraa, ettd P; ja P/
ovat keskendin jaottomat, ja Lemman 13 nojalla tdma
tarkoittaa, ettd polynomilla P, on m erillistd juurta.
Tama pitdd paikkansa jokaisella reaaliluvulla ¢ vélissa
1, tai osavilissa J, jos sitd tarvitaan. Sellaiset polyno-
mit P; ovat niin kuin polynomi @ todistuksen alussa.
Olkoon siis tg € J ja olkoot zi,..., 2, polynomin P,
juuret. Voimme kayttad funktioita hq,..., h,, saadak-
semme viitteen funktiot

fi(t) = hi(go(t), - ..

pisteen ty ympéristossid. Huomaa, ettd funktiot f; ovat
holomorfisia vilin J kompleksiymparistossa. O

y9m—1 (t))

Symmetriset polynomit

Maaritelma 16. Funktiota o: A — B kutsutaan bi-
jektioksi, jos o on sekd injektio ettd surjektio, eli

e jos a # d, niin o(a) # o(ad’),

o jokaisella alkiolla b € B on olemassa sellainen a €
A, ettd o(a) = b.

Jos A = B, niin bijektiota 0: A — A kutsutaan per-
mutaatioksi.

Huomautus 17. Joukon {1,2,...,n} permutaatio on
siis bijektio o: {1,2,...,n} — {1,2,...,n}. Toisin sa-
noen o on “jdrjestyksen sekoittaminen”. Joukon {1,2}
kaksi mahdollista permutaatiota ovat o1 ja o2, Missd

o1(1)=1, 01(2) =2 ja o3(1) =2, 02(2) =1.

Joukon {1,2,3} mahdolliset permutaatiot ovat funktiot
01, ..,06, joiden arvot o;(1), 0;(2) ja 0;(3) ovat

1,2,3, 2,1,3, 3,2,1, 1,3,2, 2,3,1 ja 3,1,2.

Masritelma 18. Polynomia P € K[zq,. ..
taan symmetriseksi polynomiksi, jos

, T kutsu-

Pz, 2n) = P(To1), -+ To(n))

milld tahansa indeksien permutaatiolla o.

Jos kirjoitetaan x ja y z1:n ja xo:n sijaan, esimerkiksi
renkaassa K[z, y] polynomit 22 + y? ja xy ovat sym-
metriset, mutteivit polynomit x2 + y ja z3y.

Jokaisella  luonnollisella  luvulla n  renkaassa
K[z1,...,2,] on olemassa tarkeitd symmetrisia po-
lynomeja, nimittdin niin kutsutut symmetriset pe-
ruspolynomit:

§1:=x1+ X2+ + Ty,

S2 1= 2X1T2 +21T3 + -+ + Tp—1Tn,

Sp ‘= X1X2 " Tp.

Namaé ovat symmetristen polynomien ”atomit”, sill jo-
kainen symmetrinen polynomi voidaan esittdéd niiden
polynomina seuraavan kuuluisan lauseen mukaan.

Lause 19 (Newton). Olkoot R rengas ja S €
R[z1,...,xz,]) symmetrinen polynomi. On olemassa yk-
sikasitteinen polynomi Q € Ry, ...,yns] siten, ettd

,Tn) = Q(s1,. ..

Esimerkki 20. Renkaassa R[z,y| symmetriset perus-
polynomit ovat x + y ja xy. Esimerkiksi 2 + y2 on
symmetrinen ja

S($1,...

»Sn)-

2 +y? = (z+y)* - 2zy).
Eli lauseen vastaava polynomi Q € R[y1,y2] on 33 —
2y2.

Lause 21. Olkoot K kunta, m € N ja P € K[z] m-
asteinen polynomi, jolla on pareittain erilliset juuret
21y ..., Zm jossakin sopivassa kunnan K laajennukses-
sa. Jos S € Klz1,...,z,] on symmetrinen polynomi,
niin S(z1,...,2m) € K.

Todistus. Lauseen 19 avulla voi kirjoittaa
,(Em) = Q(817’ ..

sopivalla polynomilla @ € Klyi, ...
sesti

S(x1,. .. y Sm)

,Ym). Eksplisiitti-

PX)=(X—21)(X —29) - (X — zn)
=X" - X" V4 aX™ 22— 4a,,

joillain ai,...,a,, € K. Huomaa, ettdi a; =

si(#1,...,2m) jokaisella ¢ € {1,...,m}. Joten
S(#1,--52m) = Q(ag,...,anm), ja tdmé on kunnan K
alkio. |
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Algebralliset alkiot, joilla on sama minimipoly-
nomi

Olkoot K kunta ja LL sen laajennus. Olkoot f,g € L\K
kaksi algebrallista alkiota, joilla on sama minimipoly-
nomi P kunnan K suhteen. Tamén pykéldn péétulos
on Lause 24: siiné tapauksessa, ettd K on kunta, jossa
voidaan ottaa derivaatta, niin voidaan sijoittaa f ja f’
alkioiden g ja ¢’ paikalle tietylld tavalla.

Tehtava 22. Oletetaan, ettd algebralliset alkiot f ja g
ovat niin kuin edelld, ja olkoon P niiden minimipolyno-
mi kunnan K suhteen. Olkoon n := deg(P) — 1. Silloin
kunnan K(f) alkio on muotoa a = Y., a;f* joillain
a; € K. Mdaritellddan nyt funktio

T K(f) —K(g), Y af— > ag,
=0 i=0

joka sijoittaa alkion g alkion f paikalle. Osoita, ettd
m(a+b) =7(a)+7(b) ja w(ab)=n(a)m(b)

jokaisella a,b € K(f). (Toisin sanoen tamd funktio

on kuntien vdalinen isomorfismi. )

Lemma 23. Samalla notaatiolla w(f') = g¢'.

Todistus. Samalla tavalla kuin artikkelin ensimmaéisen
osan Lemman 27 todistuksessa voi osoittaa, ettd

fl=— Z?:O a; ' ja g =— Z?:O aggi
Doy dai fi! Doy daigTt
Edellisen tehtdvin nojalla,
S aim(f)’
221 iaiﬂ(f)171

Tamé on yhta kuin ¢, koska 7(f) = g. O

n(f) =~

Lause 24. Olkoot K kunta meromorfisia funktioita ja
f, g kaksi algebrallista alkiota kunnan K suhteen. Ole-
tetaan, ettd alkioilla f ja g on sama minimipolynomsi
P € K[X]. Olkoon Q € K[Y, Z] kahden muuttujan po-
lynomi, ja oletetaan, ettd Q(f, f') € K. Talloin

Qf. 1) =Qlg. 9

Todistus. Koska funktion 7 rajoittuma kuntaan K on
identiteetti,

QS =m(Qf. )

Edellisen tehtdvin nojalla

m(Q(f, 1) = Qn(f), = ("))

Lopuksi tiedetaén, ettd 7(f) = g suoraan méairitelmés-
ta ja w(f’) = ¢’ edellisestd lemmasta. O

Téta pykaldd voi varmaan 1dhestyd helpommin, jos niin
sanotun tekijarenkaan késite ja ensimméinen homo-
morfismin lause ovat tutut. (Ks. kirjan [2] pykéldt 16
ja 20.) Téasta ndkokulmasta olisi ilmeista, ettd K(f) ja
K(g) ovat "likimain sama asia”.

Implikaation ”=" todistuksen alku

Oletetaan, ettd on olemassa alkeislaajennus IL niin kuin
lauseen viitteessa. Eli L = K(f1,..., fy) joillakin al-
keisfunktioilla f1, ..., fi. Todistus tehddan induktiolla
N:n suhteen. Jos N = 0, niin . = K, ja on olemassa
funktion « integraalifunktio y € L. Siis v := y kelpaa.
Kun N > 0, kirjoitetaan

K(fi,-- o fn) = K(f) (s f)
ja oletetaan, ettd véite pitdéd paikkansa kunnalle K(f;),
eli on olemassa sellaiset t1,...,t,,w € K(f1) ja

dy,...,d, € C, ettd
n 4
R 8
Tt ©

Jatkossa etsimme funktioita wq,...,u,,v funktioi-
den tq,...,t,, w kautta ja kompleksilukuja c1,...,c,
kompleksilukujen dy, ..., d, kautta.

Riippuen siitd, onko f; transkendenttinen (ekspo-
nentti- tai logaritmifunktio) vai algebrallinen alkio kun-
nan K suhteen, todistus sujuu eri tavalla. Téssa kir-
joituksessa kdymme ldpi ne tapaukset, ettd f; on
transkendenttinen eksponenttifunktio tai algebrallinen,
ja transkendenttisen logaritmifunktion tapaus jatetdan
tehtavaksi.

Implikaation ”=" todistuksen jatko: jos
f1 on transkendenttinen

Koska f; on transkendenttinen alkio, jokainen yhtalos-
sd (8) oleva funktio ¢; € K(f;) voidaan esittédéd osaméé-
rana

. - bl
"Qi(f)

sopivilla keskendén jaottomilla polynomeilla P;, @Q; €
K[X]. Koska

identiteetista (8) tulee

Ny (B N, @)
a_;dZ Pi(f1) Z;dz ) " ®)

1=

Olkoot Ry, ..., Ry kaikkien polynomien P; ja @; kaik-
ki jaottomat tekijit, toistaen mahdollisesti monta ker-
taa ne, jotka esiintyvit eri polynomeissa ja korkealla
potenssilla. (Eli voi olla, ettd R; = Rj, vaikka ¢ # j.)
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Huomaa, ettd N > n. Identiteetin (2) nojalla voidaan
kirjoittaa (9) muodossa

N
_ e_(Ri(fl))' o
a_; " Ri(f1) -

joillain sopivilla kompleksiluvuilla e;. Olkoon u; € K
polynomin R; korkeimman asteen termin kerroin, jo-
ten voimme kirjoittaa R; = u; M;, missa polynomin M;
vastaava kerroin on 1. Identiteetin (3) avulla

c)z—ZeZ Z + '

Voi olla, ettéd jalkimmaéisessd summassa M; = M; vaik-
ka i # j. Kirjoitetaan sitten yhteen ne polynomit M;,
jotka toistuvat niin, etta

N , N 4 ,
o= ; ei%z + Z&:i(ﬂ]@((ﬁ))) + ' (10)

sopivilla uusilla kertoimilla e; ja luonnollisella luvul-
la N <N.

Loppusilaukseksi, koska w on kunnan K(f;) alkio, on
olemassa sellainen g € K(X), ettd w = g(f1). Sovelle-
taan télle funktiolle g Lausetta 9 saaden

w = So(f1) +225k1

=1 k=1 "
Yhtélosta (10) tulee siis
« —Zez + Zgz (SO(fl)) (11)
N m; N m;
- Skz f1 Skz (f1)(Vi(f1))
+ pSealDWVA))
;1; Vit z:: =1 VL (f1)

Jos f; on eksponenttifunktio
Olkoon f; transkendenttinen eksponenttifunktio kun-
nan K suhteen.

Lemma 25. Olkoon

P(X)=amX™+ - +ag=

z:alXZ

m-asteinen polynomi renkaassa K[ X]. Talloin polyno-
mille

(am #0)

m

P(X) = (ia;b +a}) X' € K[X]
=0
pitee (P(f1)) = P(f1).

Todistus. Koska f; on eksponenttifunktio kunnan K
suhteen, on olemassa sellainen b € K, ettd f{ = ' f.
Silloin

m

> afi+ Zzazfl
1=0 =1

m . m ! .
agp + ;aéfi - ;miﬁﬁ

ap+ Y _(af +ia;b') f

i=1

(P(f)) =

m

=0

= P(f1).

O

Lemma 26.
manb +al,

Kayttien samaa notaatiota kuin edelld
#0, eli
degﬁ =deg P =m.

Todistus. Jos péainvaistoin olisi ma,,b' + al,
(amf{n)/ = a;nf{n + mamf{ {nil

= afmflm + mamb/f{n
— (al, + manb) [ = 0
Eli an,f{"* olisi vakiofunktio, toisin sanoen kompleksi-

luku. Taémé4 on ristiriita, koska a,, # 0 ja f; on trans-
kendenttinen. O

= 0, niin

Lemma 27. Jos a,, on vakiofunktio ja P jakaa poly-
nomin P, niin P on monomi.

Todistus. Koska asteet ovat yhtéd suuret, P jakaa po-
lynomin P jos ja vain jos on olemassa sellainen k € K,
ettd kP = P. Korkeimman asteen (eli m) termeille t4-

ma tarkoittaa
kay, = ma,b' + al, = ma,b,

missd toinen yhtéld pétee, koska a,, on vakio. Koska
am # 0 seuraa, ettd k = mb'. Télloin a,mb’ = ia;b’' +al,

eli a}—a;(m—1i)b’ = 0 kaikille ¢ € {0,...,m—1}. Mutta
sitten jokaisella indeksilla ¢
( a; )/ I 1 N
. ()2
_ay—ai(m—i)b 0

1

eli a;/f"!

on jokin vakio ¢; € C. Yhtalostd a; =

C; f{"_l ja siité, ettd fi on transkendenttinen, seuraa,
ettd a; = ¢; = 0 jokaisella ¢ € {0,...,m — 1}. Toisin
sanoen P on monomi a,, X™. O

Sovelletaan nyt edelliset huomautukset yhtéloon (11).

Jokaisella ¢ € {1,...,n} on olemassa polynomit
M,;,V; € K[X] niin, ettd
(Mi(f) = Mi(h) Ja (Vi) = Vi(fy).
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Samalla tavalla on olemassa polynomit :970 ja 51” Yh-
téalosta (11) tulee sitten

N
z;ezul +Z:sz +So(f1) (12)
§kz Slm (fO)Vi(f)
D3 ST S oLt
i=1 k=1 vk i=1 k=1
Muistetaan, ettd jos 7 # j, niin M; # M; ja V; # V;.

Olkoot M;,,..., M; ne polynomit Joukosta {M;}, jot-
ka eivét ole yhta kuin mikaén polynomi V;. Kun méa-
ritelldan

m— +1

e S 1A S VAR

Mis )

niin L(f1) on suurin yhteinen nimittajd identiteetis-
sé (12). Se osamadari, jonka nimittdja on korkein alkion
Vi(f1) potenssi, 10ytyy viimeisestd (tupla)summasta in-
deksiarvoilla ¢ = 1 ja k = my. Voidaan siis kirjoittaa

P(f1)
VI ROV (1) Vs () My (£1) -+ M (1)
_ Sml,l(fl)f/l(fl)
G
jollain sopivalla polynomilla P € K[X]. Kerrotaan mo-
lemmat puolet alkiolla ——L( f1), jolloin saadaan
P = S a ()T ()
V() Ve ()
M, (f1) - Mi, (fr).

Koska fi; on transkendenttinen, Lemmasta 7 seuraa,
etta

_ Loy - Sy A VIV v’”w+1 M, - M;,.
my
Jaoton polynomi V; on selvésti vasemman puolen teki-
jé. Ainoa tapa, jolla Vi voi jakaa oikean puolen, on ettd
V1 jakaa polynomin V;. Koska polynomin V; korkeim-
man asteen termin kerroin on 1, Lemman 27 nojalla
saadaan, ettd V7 on itse asiassa monomi ja valttdméatta

monomi X.

Jos sama prosessi tehdddn muille polynomeille V;, ja
koska V; # Vi, huomaamme, ettei V; esiinny yh-
talosséd (12). Samanlaisella tavalla voi paitelld, ettd
M; = X, eivatkd muut polynomit M; esiinny. Lopuksi
Lauseesta 9 seuraa, ettd deg S, < degV; = 1 jokaisel-

la ke {1,...,mi}, joten Sk1 = Sk1(f1) = ok jollakin
o € K. Yhtalostd (12) tulee sitten
o, U o fi
OZ:Z ei— +e1— +So (f1) +Z Z :_&
= h fl k=1
al u , o —kbor
ZZ ;+€1b +27+So(f1)-

k
- N

s
Il
_

Jos yksikin termeisté o}, —kb'oy, olisi epénolla, niin ker-
tomalla molemmat puolet alkiolla fi™' saisimme epé-
nollan polynomin, jolle f; on juuri. TA&mé on ristiriita,
koska f; on transkendenttinen, joten kaikki nuo termit
ovat nollia ja

a—g el

+ e1b’ + So(f1).

Polynomin §0 maaritelmésta ja Lemmasta 26 seuraa,
ettd deg(Sp) = 0, eli Sy = So(f1) = so € K. Voi siis
kirjoittaa

+s1b’ + s,

a—g el

ja méaarittelemalld v := e1b + sp saamme yhtélon (1).

Jos f1 on logaritmifunktio

Tehtava 28. Tee todistus itse seuraten suunnilleen sa-
maa strategiaa kuin eksponenttifunktion tapauksessa.

Vihje: Lemmat 25, 26 ja 27 pitid muokata. Esimerkiksi
uust polynomi P on

m—1
b .
P(X) = ap, X"+ 3" (a; i+ 1)ai+1—)X’.
i=0 b
Huomaa, ettd
e j0Ss am on vakio, niin deg(P) < deg(P),
= deg(P).

e j0S ay, ei ole vakio, niin deg(ﬁ)

Implikaation ”=" todistuksen jatko: jos
f1 on algebrallinen

Aloitetaan taas yhtélosta (8) eli

a—Zd—;

missd t1,...,tn,w € K(f1). Koska nyt oletetaan, et-
td f; on algebrallinen, on olemassa sellaiset polynomit
P,....P,,Q € K[X], etta t; = Pz(fl) jaw = Q(fl)
jokaisella i € {1,...,n}. Koska K(f1) on kunta, on ole-
massa polynomit Ry, ..., R, € K[X] niin, ettd

1
PR~ Ri(f1). (13)
Yhtélosta (8) tulee
a =" di(P(f1))Ri(f1) + (Q(f1)) (14)
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Olkoon M € K[X] alkion f; minimipolynomi kunnan
K suhteen, ja olkoon m := deg(M). Lemman 15 avulla
polynomilla M on m pareittan erillistd meromorfista
juurta zi,...,zny, ja yksi niistd on f;. Jollekin sopival-
le polynomille 7 € K[X, Y] yhtdlon (14) oikea puoli on
yhtéd kuin T (f1, f1). Koska z1, ..., z,, ovat saman jaot-
toman polynomin juuret, voimme kéyttdd Lausetta 24
saaden

o= Zdi(a(zk))’Ri(zk) +(Q(zx))’

jokaisella k € {1,...,m}. Jos otetaan summa kaikkien
indeksien k € {1,...,m} suhteen, saamme
m n
ma =3 (3 (Rl Rilar) + @)Y ).
k=1 N i=1
Téstd ja yhtdlostd (13) seuraa, ettd
= — d14 - M
Xy ()

Sovelletaan yht&lod (2) ensimméisessd termissd esiin-
tyvddn summaan saaden

1~ (Pi(z1)Pi(22) - - - Pi(zm
o *Zdi( (21)Pi(22) (2m))
m = Pi(21)Pi(22) - Pi(zm)
1 m !
s (L aw).
k=1
Jokaisella ¢ € {1,...,n} mééritellidn polynomi
Si(X1,..., Xom) = Pi(X1) -+ Pi(X)
renkaassa K[X7,...,X,;]. Polynomi S; on symmetri-

nen, joten siihen voidaan soveltaa Lausetta 21, kun
madritelldan
U; = 51'(21, ey Zm) = Pz(zl) cee PI(Zm),

jolloin saadaan, ettd u; on kunnan K alkio. Samalla
tavalla voimme ottaa toisen symmetrisen polynomin

S(X1,.. 0, Xm) =Y Q(Xx),
k=1
jolloin v := LS(z1,...,2,) = 237" | Q(2) on kun-

nan K alkio. Eli voimme kirjoittaa
1 o
a=—Y di—~+,
m ; ' U; +

ja saamme yhtdlon (1), kun méaaritelldan ¢; := d;/m.

Seurauksen todistus

Todistetaan lopuksi artikkelin ensimmaisen osan
Lause 30 eli seuraava lause.

Lause 29. Olkoot f,g € C(x), missi [ ei ole nolla
etkd g ole vakio, madritellyt jossakin reaalivilissd J.
Talloin funktiolla

J—C,

x— f(z)ed™

on alkeisintegraalifunktio, jos ja vain jos on olemassa
sellainen rationaalifunktio a € C(x), ettd

f=d +ag. (15)
Todistus. (<) Oletetaan, ettd jokin rationaalifunktio
a € C(z) toteuttaa f = a’ + ag’. Méadritellddn

h(z) :=a(z)ed™,  K:=C(z).

Koska €9 on eksponenttifunktio kunnan K suhteen,
K(e9) on kunnan C(z) alkeislaajennus. Joten h, joka
on tdmén laajennuksen alkio, on alkeisfunktio. Lopuksi
otetaan derivaatta:

W =ded+ag'e! = (a +ag')e? = fef.

(=) Olkoot f epéanolla ja g epavakio. Olkoon L kunnan
C(x) sellainen alkeislaajennus, johon kuuluu funktion
fe9 integraalifunktio y. Silloin kuntaan I kuuluu myos
Yy = fe9 sekd €9, joten L on kunnan C(x)(ef) alkeis-
laajennus. Olkoon

a:= fe9,

K := C(x)(e9).

Liouvillen lauseen mukaan on olemassa sellaiset
t17...,tn,w GKja dl,...,dn S (C, etta

!

_ ndtz /
afzit—i+w.
i=1

Tamén voi kirjoittaa eri tavalla Lauseen 9 nojalla, ja
niin kuin Liouvillen lauseen todistuksessa saamme yh-
talon

N / N ] ’
a=Y e+ e sy o)
N m N m
~ (Sk,i(f1)) ~ . Ski(f)(Vilf)
XX Vi) AT v

Lauseen 8 mukaan, €9 on transkendenttinen kunnan
C(z) suhteen, joten voimme kiyttdd samaa strategiaa
kuin Liouvillen lauseen todistuksen osassa, joka koskee
transkendenttisia eksponenttifunktioita. Liséksi kirjoi-
tetaan « eli fed renkaan C(z)[X] jonakin polynomina
pistessé €9, eli

a= fed = P(e9), P(X):=fX.
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Samalla tavalla kuin yll&4 mainitussa todistuksen osassa
yhtéilosta (16) tulee

S() 69))/ + 619,.

ZCz

Koska vasemmalla puolella oleva polynomi on ensim-
méisté astetta, niin pitd4 myodskin olla polynomin Sj).
Ja transkendenttisen eksponenttifunktion tapauksen
huomausten mukaan pétee myds deg(Sy) = 1, joten

(17)

So(X) = 51X + 50

joillakin sopivilla s1,s¢9 € C(z). Niinpa yhtélosta (17)
tulee

N o
feg = chj —|—(
-yt

Kirjoittamalla eri tavalla saamme

s1e9 +59) +e1g’

ii

= —|—sleg +s19'€? + s, +e1g’.

(f = 51— 19 engcz

+so+slg,

missd oikea puoli ei sisdlld funktiota e9. Jos funk-
tion e9 kerroin vasemmalla puolella olisi epénolla, sai-
simme ristiriidan transkendentisuuden kanssa, joten
f—s—s19 =0el

f=s1+sy9.

Koska s € C(x), saamme halutun yhtélén (15). O

Viimeisida kommenteja

Niin kuin sanottu ensimméisessé osassa on tama kirjoi-
tus artikkelin [1] inspiroima, paitsi ettd tdssid teemme
kaiken tavallisen derivaatan ”perus”tapauksessa. Peri-
aatteessa on mahdollista analysoida miké vaan deri-
vaatta seuraavan madritelméan mukaan.

jossa maamtellaan sellainen funktio D: K — K, jota
kutsutaan derivaataksi, ettd jokaisilla alkioilla a,b €
K pdtee
D(a+b) = D(a)+ D(b)

ja D(ab) = D(a)b+aD(b).

Esimerkiksi tavallinen derivaatta on derivaatta edelli-
sen maéaaritelmédn mukaan. Jos D on derivaatta, niin
on —D myo6skin. Tamén kirjoituksen tulokset pitéavét
paikkansa yleisemmaéssé tapauksessa, ettd kyseessd on
yleinen derivaatta. Matematiikan osa-alue, joka késit-
telee téllaisia kéasitteitd ja tuloksia on differentiaalial-
gebra (engl. differential algebra).
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