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Miksei funktiota e−x2 voi integroida? (Osa 2/2)

Milo Orlich
milo.orlich@alumni.aalto.fi

Tämä on artikkelin [3] jatko. Tässä osassa todistetaan
Liouvillen lause. Tätä lausetta ja Lausetta 29 lukuun
ottamatta artikkelin ensimmäisen osan tuloksia ja mää-
ritelmiä ei toisteta.

Jatkossa käytetään seuraavaa notaatiota.

Määritelmä 1. Jos laajennusta K(α) halutaan laa-
jentaa lisää alkiolla β, niin merkinnän K(α)(β) sijaan
kirjoitetaan K(α, β). Ja samoin jos on monta alkiota
α1, . . . , αn, kirjoitetaan K(α1, . . . , αn).

Toistetaan Liouvillen lauseen (eli artikkelin ensimmäi-
sen osan Lauseen 29) väite:

Lause 2 (Liouville). Olkoot K derivaatan suhteen sul-
jettu kunta meromorfisia funktioita ja α ∈ K. On ole-
massa kunnan K alkeislaajennus L ja sellainen y ∈ L,
että y′ = α, jos ja vain jos on olemassa sellaiset
u1, . . . , un, v ∈ K ja c1, . . . , cn ∈ C, että

α =
n∑

i=1
ci

u′
i

ui
+ v′. (1)

Liouvillen lauseen muoto on ”jotain ⇔ jotain”, joten
pitää todistaa, että implikaatio pätee molempiin suun-
tiin. Aloitetaan yksinkertaisemmasta implikaatiosta.

Implikaation ”⇐” todistus. Oletetaan, että on olemas-
sa sellaiset u1, . . . , un, v ∈ K ja c1, . . . , cn ∈ C, että yh-
tälö (1) pätee. Jos on olemassa sellaiset i0 ∈ {1, . . . , n}

ja a ∈ K, että
u′

i0

ui0

= a′,

niin määritellään v̄ := v + ci0a. Jos tämä tapahtuu
uudelleen, niin määritellään v̄ kunnan K alkioiden de-
rivaattoja vastaavien yhtälön (1) termien summaksi.
Voidaan siis olettaa, että jokaisella indeksillä i ei ole
olemassa sellaista a ∈ K, että u′

i/ui = a′. Lisäksi voi-
daan olettaa, että välissä I, jossa v ja kaikki funktiot uj

on määritelty, pätee ui(x) ̸= 0 jokaisella alkiolla x ∈ I
ja indeksillä i ∈ {1, . . . , n}, tai muuten otetaan osaväli
J ⊊ I.

Määritellään nyt ai := log ui jokaisella i ∈ {1, . . . , n}.
Voidaan olettaa, että ai /∈ K(a1, . . . , ai−1), tai muuten
ai yksinkertaisesti ohitetaan. Sitten L := K(a1, . . . , an)
on kunnan K alkeislaajennus. Koska kaikki funktiot ai

sekä v kuuluvat kuntaan L, saadaan myös

y :=
n∑

i=1
ciai + v ∈ L.

Derivoimalla tämä saadaan

y′ =
n∑

i=1
cia

′
i + v′ =

n∑
i=1

ci
u′

i

ui
+ v′ = α.

Huomautus 3. Jos etsitään integraalifunktiota kun-
nan K ulkopuolelta, ainoa mahdollisuus saada se on
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lisäämällä äärettömän monta logaritmifunktiota! Esi-
merkiksi rationaalifunktiolla 1

x ei ole integraalifunk-
tiota kunnassa C(x), mutta kyllä on laajennuksessa
C(x)(ln x) = C(x, ln x).

Liouvillen lauseen implikaation ”⇒” todistus tulee ole-
maan melko pitkä ja tehdään eri tapauksissa. Ensin ke-
rätään paljon apulauseita seuraavassa luvussa. Liouvil-
len lauseen implikaation ”⇒” todistus alkaa sivulla 12.
Todistus jatkuu eri tavalla riippuen siitä, onko kysees-
sä oleva funktio transkendenttinen eksponenttifunktio
(niin kuin kirjoituksen otsikossa) vai algebrallinen.

Todistuksen perusainekset

Tehtävä 4. Tarkista, että seuraava yhtälö pitää paik-
kansa:

(f1f2 · · · fn)′

f1f2 · · · fn
= f ′

1
f1

+ · · · + f ′
n

fn
. (2)

Tulemme käyttämään sitä ja erikoistapausta
(fg)′

fg
= f ′

f
+ g′

g
(3)

pari kertaa jatkossa.

Meromorfisen funktion poolit

Määritelmä 5. Olkoot f ja g holomorfisia funktioita
jossain kompleksitason avoimessa osajoukossa U . Me-
romorfisen funktion f(x)

g(x) poolit (eli navat) ovat funk-
tion g nollakohdat.

Huomautus 6. Ainoa poolien sovellus, jota käytäm-
me jatkossa, on siinä tapauksessa, että kyseessä oleva
meromorfinen funktio on rationaalifunktio eli kahden
polynomin osamäärä P (x)

Q(x) . Oletetaan, että P ja Q ovat
keskenään jaottomat, ja jaetaan nimittäjä tekijöihin:

P (x)
Q(x) = P (x)

ω(x − z1)a1(x − z2)a2 · · · (x − zn)an
.

Tässä z1, . . . , zn ovat eri kompleksilukuja, ω ∈ C
ja a1, . . . , an ovat positiivisia kokonaislukuja. Tietysti
P (zi) ̸= 0 kaikilla i. Sanotaan, että zi on funktion P (x)

Q(x)
ai-kertainen pooli, toisin sanoen poolin zi kertalu-
ku on ai. Huomaamme nyt, että rationaalifunktion de-
rivaatta on sekin rationaalifunktio, ja sen poolien ker-
taluvut ovat välttämättä > 1: jos siis kirjoitetaan

P (x)
Q(x) = f(x)

(x − zi)ai
,

jossa rationaalifunktio f(x) sisältää kaikki muut termit
(x − zj)aj , niin

d

dx

P (x)
Q(x) = (x − zi)aif ′(x) − ai(x − zi)ai−1f(x)

(x − zi)2ai

= (x − zi)f ′(x) − aif(x)
(x − zi)ai+1 ,

eikä zi ole viimeisen osoittajan nollakohta.

Transkendenttisuudesta

Lemma 7. Olkoon α transkendenttinen alkio ja olkoot
P ja Q kaksi eri polynomia. Tällöin P (α) ̸= Q(α).

Todistus. Jos P (α) = Q(α), niin α on polynomin P −Q
juuri. Transkendenttisuuden takia tämä tarkoittaa, et-
tä P − Q on nollapolynomi, eli P = Q.

Lemma 8. Olkoon g(x) ∈ C(x) rationaalifunktio, joka
ei ole vakio. Tällöin funktio eg(x) on transkendenttinen
kunnan C(x) suhteen.

Todistus. Oletetaan, että eg on algebrallinen kunnan
K := C(x) suhteen. Silloin on olemassa sen minimipo-
lynomi

P = Xn + fn−1Xn−1 + · · · + f1X + f0 ∈ K[X].

Derivoidaan yhtälö P (eg) = 0 eli

eng + fn−1e(n−1)g + · · · + f1eg + f0 = 0

saaden

ng′eng +
(
f ′

n−1 + (n − 1)fn−1g′)e(n−1)g+
· · · + (f ′

1 + g′f1)eg+f ′
0 = 0.

On siis olemassa toinen n-asteinen polynomi, jonka ar-
vo funktiolle eg on nolla. Tämä on välttämättä poly-
nomin P kerrannainen, ja korkeimman ja pienimmän
asteen kertoimet ovat verrannolliset:

ng′ = f ′
0

f0
. (4)

Kirjoitetaan rationaalifunktio f0 ∈ C(x) osoittajan ja
nimittäjän tulona lineaarisia, pareittain erillisiä tekijöi-
tä:

f0 =
m∏

i=1
(x − zi)αi , m ∈ N, zi ∈ C(x), αi ∈ Z \ {0}.

Sen derivaatta on

f ′
0 =

[
α1(x − z1)α1−1(x − z2)α2 · · · (x − zm)αm

]
+ · · ·

+
[
αm(x − z1)α1 · · · (x − zm−1)αm−1(x − zm)αm−1]

=
m∑

i=1
αi

f0

x − zi
= f0

m∑
i=1

αi

x − zi
.

Tämän ja yhtälön (4) avulla saamme, että

ng′ =
m∑

i=1

αi

x − zi
.

Huomaamme nyt, että oikealla puolella olevan funk-
tion poolien kertaluku on 1, kun taas ng′ on rationaa-
lifunktion derivaatta, jonka poolien kertaluku on aina
suurempi kuin 1 (ks. Huom 6). Tämä on ristiriita.



Solmu 3/2025 9

Osamurtokehitelmä

Seuraava apulause on se, jota käytetään eniten Liouvil-
len lauseen todistuksessa. Siinä tapauksessa, että ky-
seessä oleva funktio on transkendenttinen (niin kuin
artikkelin otsikossa), käytetään pelkästään seuraavaa
lausetta.

Lause 9. Olkoot K kunta ja f ∈ K(X) rationaalifunk-
tio, jonka nimittäjä ei ole vakio. Tällöin on olemassa

• luonnollinen luku N ∈ Z>0,
• N pareittain erillistä jaotonta polynomia

V1, . . . , VN ∈ K[X], joiden korkeimman asteen ter-
min kerroin on 1,

• N luonnollista lukua m1, . . . , mN ∈ Z>0,
• jokaisilla i ∈ {1, . . . , N} ja k ∈ {1, . . . , mi}, polyno-

mi Sk,i ∈ K[X], jolle deg Sk,i < deg Vi,
• polynomi S0 ∈ K[X]

siten, että

f = S0 +
N∑

i=1

mi∑
k=1

Sk,i

V k
i

.

Todistus. Kirjoitetaan f = P/Q, missä P, Q ∈ K[X]
ovat keskenään jaottomat ja deg Q ≥ 1. Olkoon

Q = V ν1
1 V ν2

2 · · · V νN

N

alkutekijähajotelma (eli Vi ̸= Vj , ja kaikki Vi:t ovat
jaottomat). Jos N = 1, niin funktio on jo yhtälön (5)
muodossa. Jos N > 1, polynomit V ν1

1 ja

Q̃ := V ν2
2 · · · V νN

N

ovat keskenään jaottomat. Bézout’n yhtälön (ks. artik-
kelin osa 1) mukaan on olemassa S, T ∈ K[X] siten,
että SV ν1

1 + TQ̃ = 1. Nyt voidaan kirjoittaa

f = P

Q
= P (SV ν1

1 + TQ̃)
V ν1

1 Q̃
= PS

Q̃
+ PT

V ν1
1

,

missä jälkimmäisen yhteenlaskettavan nimittäjä on
jaottoman polynomin potenssi. Jos N − 1 > 1, tois-
tetaan sama prosessi, jolloin saadaan

f = ∗
˜̃Q

+ ∗
V ν2

2
+ PT

V ν1
1

,

missä ˜̃Q = V ν3
3 · · · V νN

N ja pikku tähdet esittävät sopivia
polynomeja. Äärellisen monen askelen jälkeen saadaan

f = R1

V ν1
1

+ · · · + RN

V νN

N

=
N∑

i=1

Ri

V νi
i

(5)

joillain polynomeilla R1, . . . , RN ∈ K[X]. Mikäli
deg Ri > deg Vi tietyllä indeksillä i, Eukleideen algo-
ritmin avulla saadaan sellaiset Qi ja Si, että Ri =

QiVi + Si ja deg Si < deg Vi. Silloin summan (5) i:s
yhteenlaskettava voidaan kirjoittaa muotoon

Ri

V νi
i

= QiVi + Si

V νi
i

= Qi

V νi−1
i

+ Si

V νi
i

.

Mikäli deg(Qi) > deg(Vi), sama prosessi toistetaan,
kunnes

Ri

V λi
i

= S0,i +
mi∑

k=1

Sk,i

V k
i

, (6)

missä deg Sk,i < deg Vi jokaisella k ∈ {1, . . . , mi}.

Lopuksi, mikäli polynomin Vi korkeimman asteen ter-
min kerroin on a ̸= 1, voidaan määritellä V̄i := Vi

a ja
S̄k,i := Sk,i

ak . Tällöin polynomin V̄i korkeimman asteen
termin kerroin onkin 1, ja Sk,i

V k
i

= S̄k,i

V̄ k
i

.

Esimerkki 10. Edellistä lausetta käytetään jatkossa
”teoreettisena” tuloksena, emmekä ole kiinnostuneita
erityisistä rationaalifunktioista. Voi olla kuitenkin hyö-
dyllistä käydä todistus läpi ymmärtääksesi, miten se
toimii. Esimerkiksi siinä tapausessa, että annettu ra-
tionaalifunktio on P

Q = x3

x+1 , niin N = 1 ja ainoa ni-
mittäjän jaoton tekijä on V1 = x + 1. Voit tarkistaa,
että lauseen todistus tuottaa osamurtokehitelmän

x3

x + 1 = (x2 − 1 + 1)(x + 1)
x + 1 − 1

x + 1

= x2 − x + 1 − 1
x + 1 .

Tämä onkin helppo rationaalifunktio. Voit kokeilla itse
vaikeampia esimerkkejä.

Polynomin juuret

Alkio r on polynomin P juuri, jos P (r) = 0. Toisin
sanoen r on polynomiyhtälön P (x) = 0 ratkaisu. Al-
gebran pääongelma on löytää tällaisia juuria. Jos ker-
roinjoukko on liian pieni, on vaikeaa löytää niitä, joten
joukkoa laajennetaan:

• Polynomilla X + 1 ei ole juurta joukossa N, mutta
sillä on juuri −1 joukossa Z.

• Polynomilla 2X − 1 ei ole juurta joukossa Z, mutta
sillä on juuri 1

2 joukossa Q.
• Polynomilla X2 − 2 ei ole juurta joukossa Q, mutta

sillä on juuri
√

2 joukossa R.
• Polynomilla X2 + 1 ei ole juurta joukossa R, mutta

sillä on juuri i joukossa C.

Kuten näimme, Q ⊂ R ⊂ C on ketju kuntalaajennuk-
sia. Juuri tämän takia kuntalaajennuksia tutkitaan: ha-
luamme laajentaa kuntaa niin, että juuria löytyy. Huo-
maa, ettei tarvitse ottaa kuntaa R juuren löytämiseksi
polynomille X2 − 2 ∈ Q[X]: laajennus Q(

√
2) riittää.
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Lause 11 (algebran peruslause). Jokaisella epävakiol-
la polynomilla P ∈ C[X] on jokin juuri joukossa C.

Itse asiassa tätä lausetta voi käyttää todistamaan, et-
tä m-asteisella kompleksikertoimisella polynomilla on
täsmälleen m juurta, jos lasketaan kertalukuja. Toisin
sanoen, m-asteinen polynomi P ∈ C[X] voidaan kir-
joittaa tulona lineaarisia termejä

P (X) = (X − z1)(X − z2) · · · (X − zm),

missä jotkut juuret zi ∈ C voivat toistua. (Vaikka edel-
listä lausetta kutsutaan ”peruslauseeksi”, se ei ole mi-
kään triviaali tulos.) Tämä seuraa edellisestä lauseesta
ja siitä, että r on polynomin P juuri jos ja vain jos
X − r jakaa polynomin P , eli P = (X − r)Q jollakin
polynomilla Q. (Ks. kirjan [2] Lause 22.9.)

Määritelmä 12. Olkoot P polynomi ja r sen juuri.
Juuren r kertaluku on korkein n, jolle (X −r)n jakaa
polynomin P , eli korkein n, jolle voidaan kirjoittaa

P = (X − r)nQ,

jossa Q(r) ̸= 0.

Lemma 13. Polynomille P ∈ C[X] seuraavat ehdot
ovat yhtäpitävät:

• kaikkien P :n juurien kertaluvut ovat = 1,

• P ja P ′ ovat keskenään jaottomat.

Todistus. Oletetaan, että polynomilla P on juuri r, jon-
ka kertaluku on n > 1. Tällöin P (X) = (X − r)nQ(X)
jollain sopivalla Q, jolle pätee Q(r) ̸= 0. Tällöin

P ′(X) = n(X − r)n−1Q(X) + (X − r)nQ′(X),

joten P ′(r) = 0. Tämä tarkoittaa, että X−r jakaa myös
polynomin P ′. Jos sen sijaan n = 1, niin P ′(r) ̸= 0, eli
r ei ole derivaatan juuri. Mutta koska polynomin P
voi jakaa lineaarisiin tekijöihin, niin jos kaikkien juu-
rien kertaluvut ovat = 1, niin P ja P ′ ovat keskenään
jaottomat.

Olkoon m ∈ Z>0. Kirjoittamalla jatkossa Cm
w tarkoi-

tamme, että karteesiselle tulolle Cm = C× · · · ×C ote-
taan koordinaatit (w1, . . . , wm). Seuraavakin lause on
melko kuuluisa.

Lause 14 (Implisiittisen funktion lause). Olkoot
m, n ∈ Z>0 ja A tulon Cn+m = Cn

z ×Cm
w avoin joukko.

Olkoon F = (F1, . . . , Fn) : A → Cn holomorfinen funk-
tio. Olkoon (z0, w0) = (z0

1 , . . . , z0
n, w0

1, . . . , w0
m) ∈ A sel-

lainen piste, että F (z0, w0) = 0 ja Jacobin matriisi sii-
nä pisteessä, eli

∂F1(z0,w0)
∂z1

· · · ∂Fn(z0,w0)
∂z1

...
. . .

...
∂F1(z0,w0)

∂zn
· · · ∂Fn(z0,w0)

∂zn

 ,

on kääntyvä. Tällöin on olemassa pisteen z0 ∈ Cn

avoin ympäristö U , pisteen w0 ∈ Cm avoin ympäris-
tö V ja holomorfinen funktio h : V → U siten, että

• U × V ⊆ A,
• F (h(w), w) = 0 kaikilla w ∈ V ,
• h(w0) = z0.

Lause 15. Olkoon K kunta meromorfisia funktioita re-
aalivälissä I ja olkoon P ∈ K[X] m-asteinen jaoton po-
lynomi. Tällöin jollekin osavälille J ⊆ I on olemassa
sellaiset pareittain erilliset meromorfiset funktiot

f1, . . . , fm : J → C,

että P (fi) = 0 jokaisella i = 1, . . . , m.

Todistus. Olkoon

Q(x) = xm + cm−1xm−1 + · · · + c1x + c0 ∈ C[x]

sellainen polynomi, jolla on m parittain erillistä juurta
z1, . . . , zm ∈ C. Lemmasta 13 seuraa, että polynomeilla
Q ja

Q′(x) =
m∑

i=1
icix

i−1

ei ole yhteisiä tekijöitä, joten Q′(zi) ̸= 0 kaikilla i. Mää-
ritellään holomorfinen funktio

F : Cm+1 → C,

(x, a0, . . . , am−1) 7→ xm + am−1xm−1 + · · · + a1x + a0.

Haluamme nyt käyttää Lausetta 14, ja päätelläksemme
Jacobin matriisin kääntyvyyden riittää huomata, että

∂F

∂x
(zi, c0, . . . , cm−1) = Q′(zi) ̸= 0

jokaisella i ∈ {1, . . . , m}. Käytämme Lausetta 14
m kertaa, yhden kerran jokaisella zi. On olemassa pis-
teen (c0, . . . , cm−1) avoin ympäristö V ⊆ Cm, pisteiden
zi avoimet ympäristöt Ui ⊆ C ja m holomorfista funk-
tiota hi : V → Ui niin, että

• jokaisella (a0, . . . , am−1) ∈ V

F
(
hi(a0, . . . , am−1), a0, . . . , am−1

)
= 0,

eli hi(a0, . . . , am−1) on polynomin xm +am−1xm−1 +
· · · + a0 juuri;

• hi(c0, . . . , cm−1) = zi jokaisella i ∈ {1, . . . , m}.

Olkoon nyt

P (X) =
m∑

i=0
giX

i ∈ K[X]

polynomi kuten lauseen väitteessä. Voimme olettaa, et-
tä kaikki funktiot gi ovat määritellyt välissä I, tai muu-
ten otetaan sellainen osaväli. Voimme myös olettaa, et-
tä funktio gm ei ole koskaan nolla välissä I. Toisin sa-
noen, voimme jakaa funktiolla gm, tai itse asiassa olet-
taa alusta alkaen, että polynomin P korkeimman as-
teen termin kerroin on gm = 1.
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Jokaisella reaaliluvulla t ∈ I määritellään polynomi

Pt(x) :=
m∑

i=0
gi(t)xi ∈ C[x].

Etsimme sellaisen t0 ∈ I, että polynomilla Pt0 on m pa-
rittain erillistä juurta. Koska P on jaoton, P ja P ′ ovat
keskenään jaottomat. Bézout’n lauseen mukaan (ks. ar-
tikkelin osa 1) on olemassa sellaiset S, T ∈ K[X], että

SP + TP ′ = 1. (7)

Voimme olettaa, että polynomien S ja T kaikki kertoi-
met — jotka ovat kunnan K alkioita, eli funktioita —
ovat määritellyt välissä I, tai muuten otetaan osaväli.
Jokaisella t ∈ I voimme siis määritellä polynomit P ′

t ,
St ja Tt samalla tavalla kuin polynomin Pt. Yhtälöstä 7
saamme yhtälön

StPt + TtP
′
t = 1,

joka pätee renkaassa C[x]. Tästä seuraa, että Pt ja P ′
t

ovat keskenään jaottomat, ja Lemman 13 nojalla tämä
tarkoittaa, että polynomilla Pt on m erillistä juurta.
Tämä pitää paikkansa jokaisella reaaliluvulla t välissä
I, tai osavälissä J , jos sitä tarvitaan. Sellaiset polyno-
mit Pt ovat niin kuin polynomi Q todistuksen alussa.
Olkoon siis t0 ∈ J ja olkoot z1, . . . , zm polynomin Pt0

juuret. Voimme käyttää funktioita h1, . . . , hm saadak-
semme väitteen funktiot

fi(t) = hi

(
g0(t), . . . , gm−1(t)

)
pisteen t0 ympäristössä. Huomaa, että funktiot fi ovat
holomorfisia välin J kompleksiympäristössä.

Symmetriset polynomit

Määritelmä 16. Funktiota σ : A → B kutsutaan bi-
jektioksi, jos σ on sekä injektio että surjektio, eli

• jos a ̸= a′, niin σ(a) ̸= σ(a′),
• jokaisella alkiolla b ∈ B on olemassa sellainen a ∈

A, että σ(a) = b.

Jos A = B, niin bijektiota σ : A → A kutsutaan per-
mutaatioksi.

Huomautus 17. Joukon {1, 2, . . . , n} permutaatio on
siis bijektio σ : {1, 2, . . . , n} → {1, 2, . . . , n}. Toisin sa-
noen σ on ”järjestyksen sekoittaminen”. Joukon {1, 2}
kaksi mahdollista permutaatiota ovat σ1 ja σ2, missä

σ1(1) = 1, σ1(2) = 2 ja σ2(1) = 2, σ2(2) = 1.

Joukon {1, 2, 3} mahdolliset permutaatiot ovat funktiot
σ1, . . . , σ6, joiden arvot σi(1), σi(2) ja σi(3) ovat

1, 2, 3, 2, 1, 3, 3, 2, 1, 1, 3, 2, 2, 3, 1 ja 3, 1, 2.

Määritelmä 18. Polynomia P ∈ K[x1, . . . , xn] kutsu-
taan symmetriseksi polynomiksi, jos

P (x1, . . . , xn) = P (xσ(1), . . . , xσ(n))

millä tahansa indeksien permutaatiolla σ.

Jos kirjoitetaan x ja y x1:n ja x2:n sijaan, esimerkiksi
renkaassa K[x, y] polynomit x2 + y2 ja xy ovat sym-
metriset, mutteivät polynomit x2 + y ja x3y.

Jokaisella luonnollisella luvulla n renkaassa
K[x1, . . . , xn] on olemassa tärkeitä symmetrisiä po-
lynomeja, nimittäin niin kutsutut symmetriset pe-
ruspolynomit:

s1 := x1 + x2 + · · · + xn,

s2 := x1x2 + x1x3 + · · · + xn−1xn,

...
sn := x1x2 · · · xn.

Nämä ovat symmetristen polynomien ”atomit”, sillä jo-
kainen symmetrinen polynomi voidaan esittää niiden
polynomina seuraavan kuuluisan lauseen mukaan.

Lause 19 (Newton). Olkoot R rengas ja S ∈
R[x1, . . . , xn] symmetrinen polynomi. On olemassa yk-
sikäsitteinen polynomi Q ∈ R[y1, . . . , yn] siten, että

S(x1, . . . , xn) = Q(s1, . . . , sn).

Esimerkki 20. Renkaassa R[x, y] symmetriset perus-
polynomit ovat x + y ja xy. Esimerkiksi x2 + y2 on
symmetrinen ja

x2 + y2 = (x + y)2 − 2(xy).

Eli lauseen vastaava polynomi Q ∈ R[y1, y2] on y2
1 −

2y2.

Lause 21. Olkoot K kunta, m ∈ N ja P ∈ K[x] m-
asteinen polynomi, jolla on pareittain erilliset juuret
z1, . . . , zm jossakin sopivassa kunnan K laajennukses-
sa. Jos S ∈ K[x1, . . . , xm] on symmetrinen polynomi,
niin S(z1, . . . , zm) ∈ K.

Todistus. Lauseen 19 avulla voi kirjoittaa

S(x1, . . . , xm) = Q(s1, . . . , sm)

sopivalla polynomilla Q ∈ K[y1, . . . , ym]. Eksplisiitti-
sesti

P (X) = (X − z1)(X − z2) · · · (X − zm)
= Xm − a1Xm−1 + a2Xm−2 − · · · ± am

joillain a1, . . . , am ∈ K. Huomaa, että ai =
si(z1, . . . , zm) jokaisella i ∈ {1, . . . , m}. Joten
S(z1, . . . , zm) = Q(a1, . . . , am), ja tämä on kunnan K
alkio.
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Algebralliset alkiot, joilla on sama minimipoly-
nomi

Olkoot K kunta ja L sen laajennus. Olkoot f, g ∈ L\K
kaksi algebrallista alkiota, joilla on sama minimipoly-
nomi P kunnan K suhteen. Tämän pykälän päätulos
on Lause 24: siinä tapauksessa, että K on kunta, jossa
voidaan ottaa derivaatta, niin voidaan sijoittaa f ja f ′

alkioiden g ja g′ paikalle tietyllä tavalla.

Tehtävä 22. Oletetaan, että algebralliset alkiot f ja g
ovat niin kuin edellä, ja olkoon P niiden minimipolyno-
mi kunnan K suhteen. Olkoon n := deg(P ) − 1. Silloin
kunnan K(f) alkio on muotoa a =

∑n
i=0 aif

i joillain
ai ∈ K. Määritellään nyt funktio

π : K(f) −→ K(g),
n∑

i=0
aif

i 7−→
n∑

i=0
aig

i,

joka sijoittaa alkion g alkion f paikalle. Osoita, että

π(a + b) = π(a) + π(b) ja π(ab) = π(a)π(b)

jokaisella a, b ∈ K(f). (Toisin sanoen tämä funktio π
on kuntien välinen isomorfismi.)

Lemma 23. Samalla notaatiolla π(f ′) = g′.

Todistus. Samalla tavalla kuin artikkelin ensimmäisen
osan Lemman 27 todistuksessa voi osoittaa, että

f ′ = −
∑n

i=0 a′
if

i∑n
i=1 iaif i−1 ja g′ = −

∑n
i=0 a′

ig
i∑n

i=1 iaigi−1 .

Edellisen tehtävän nojalla,

π(f ′) = −
∑m

i=0 a′
iπ(f)i∑m

i=1 iaiπ(f)i−1 .

Tämä on yhtä kuin g′, koska π(f) = g.

Lause 24. Olkoot K kunta meromorfisia funktioita ja
f, g kaksi algebrallista alkiota kunnan K suhteen. Ole-
tetaan, että alkioilla f ja g on sama minimipolynomi
P ∈ K[X]. Olkoon Q ∈ K[Y, Z] kahden muuttujan po-
lynomi, ja oletetaan, että Q(f, f ′) ∈ K. Tällöin

Q(f, f ′) = Q(g, g′).

Todistus. Koska funktion π rajoittuma kuntaan K on
identiteetti,

Q(f, f ′) = π(Q(f, f ′)).

Edellisen tehtävän nojalla

π(Q(f, f ′)) = Q(π(f), π(f ′)).

Lopuksi tiedetään, että π(f) = g suoraan määritelmäs-
tä ja π(f ′) = g′ edellisestä lemmasta.

Tätä pykälää voi varmaan lähestyä helpommin, jos niin
sanotun tekijärenkaan käsite ja ensimmäinen homo-
morfismin lause ovat tutut. (Ks. kirjan [2] pykälät 16
ja 20.) Tästä näkökulmasta olisi ilmeistä, että K(f) ja
K(g) ovat ”likimain sama asia”.

Implikaation ”⇒” todistuksen alku

Oletetaan, että on olemassa alkeislaajennus L niin kuin
lauseen väitteessä. Eli L = K(f1, . . . , fN ) joillakin al-
keisfunktioilla f1, . . . , fN . Todistus tehdään induktiolla
N :n suhteen. Jos N = 0, niin L = K, ja on olemassa
funktion α integraalifunktio y ∈ L. Siis v := y kelpaa.
Kun N > 0, kirjoitetaan

K(f1, . . . , fN ) = K(f1)
(
f2, . . . , fN

)
ja oletetaan, että väite pitää paikkansa kunnalle K(f1),
eli on olemassa sellaiset t1, . . . , tn, w ∈ K(f1) ja
d1, . . . , dn ∈ C, että

α =
n∑

i=1
di

t′
i

ti
+ w′. (8)

Jatkossa etsimme funktioita u1, . . . , un, v funktioi-
den t1, . . . , tn, w kautta ja kompleksilukuja c1, . . . , cn

kompleksilukujen d1, . . . , dn kautta.

Riippuen siitä, onko f1 transkendenttinen (ekspo-
nentti- tai logaritmifunktio) vai algebrallinen alkio kun-
nan K suhteen, todistus sujuu eri tavalla. Tässä kir-
joituksessa käymme läpi ne tapaukset, että f1 on
transkendenttinen eksponenttifunktio tai algebrallinen,
ja transkendenttisen logaritmifunktion tapaus jätetään
tehtäväksi.

Implikaation ”⇒” todistuksen jatko: jos
f1 on transkendenttinen

Koska f1 on transkendenttinen alkio, jokainen yhtälös-
sä (8) oleva funktio ti ∈ K(f1) voidaan esittää osamää-
ränä

ti = Pi(f1)
Qi(f1)

sopivilla keskenään jaottomilla polynomeilla Pi, Qi ∈
K[X]. Koska

( a
b )′

a
b

= a′

a
− b′

b
,

identiteetistä (8) tulee

α =
n∑

i=1
di

(Pi(f1))′

Pi(f1) −
n∑

i=1
di

(Qi(f1))′

Qi(f1) + w′. (9)

Olkoot R1, . . . , RN kaikkien polynomien Pi ja Qi kaik-
ki jaottomat tekijät, toistaen mahdollisesti monta ker-
taa ne, jotka esiintyvät eri polynomeissa ja korkealla
potenssilla. (Eli voi olla, että Ri = Rj , vaikka i ̸= j.)
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Huomaa, että N ≥ n. Identiteetin (2) nojalla voidaan
kirjoittaa (9) muodossa

α =
N∑

i=1
ei

(Ri(f1))′

Ri(f1) + w′

joillain sopivilla kompleksiluvuilla ei. Olkoon ui ∈ K
polynomin Ri korkeimman asteen termin kerroin, jo-
ten voimme kirjoittaa Ri = uiMi, missä polynomin Mi

vastaava kerroin on 1. Identiteetin (3) avulla

α =
N∑

i=1
ei

u′
i

ui
+

N∑
i=1

ei
(Mi(f1))′

Mi(f1) + w′.

Voi olla, että jälkimmäisessä summassa Mi = Mj vaik-
ka i ̸= j. Kirjoitetaan sitten yhteen ne polynomit Mi,
jotka toistuvat niin, että

α =
N∑

i=1
ei

u′
i

ui
+

Ñ∑
i=1

εi
(Mi(f1))′

Mi(f1) + w′ (10)

sopivilla uusilla kertoimilla εi ja luonnollisella luvul-
la Ñ ≤ N .

Loppusilaukseksi, koska w on kunnan K(f1) alkio, on
olemassa sellainen g ∈ K(X), että w = g(f1). Sovelle-
taan tälle funktiolle g Lausetta 9 saaden

w = S0(f1) +
N∑

i=1

mi∑
k=1

Sk,i(f1)
V k

i (f1)
.

Yhtälöstä (10) tulee siis

α =
N∑

i=1
ei

u′
i

ui
+

Ñ∑
i=1

εi
(Mi(f1))′

Mi(f1) + (S0(f1))′ (11)

+
N∑

i=1

mi∑
k=1

(Sk,i(f1))′

V k
i (f1)

−
N∑

i=1

mi∑
k=1

k
Sk,i(f1)(Vi(f1))′

V k+1
i (f1)

.

Jos f1 on eksponenttifunktio

Olkoon f1 transkendenttinen eksponenttifunktio kun-
nan K suhteen.

Lemma 25. Olkoon

P (X) = amXm + · · · + a0 =
m∑

i=0
aiX

i, (am ̸= 0)

m-asteinen polynomi renkaassa K[X]. Tällöin polyno-
mille

P̃ (X) :=
m∑

i=0
(iaib

′ + a′
i)Xi ∈ K[X]

pätee (P (f1))′ = P̃ (f1).

Todistus. Koska f1 on eksponenttifunktio kunnan K
suhteen, on olemassa sellainen b ∈ K, että f ′

1 = b′f1.
Silloin

(P (f1))′ =
m∑

i=0
a′

if
i
1 +

m∑
i=1

iaif
′
1f i−1

1

= a′
0 +

m∑
i=1

a′
if

i
1 +

m∑
i=1

iai
f ′

1
f1

f i
1

= a′
0 +

m∑
i=1

(a′
i + iaib

′)f i
1

=
m∑

i=0
(a′

i + iaib
′)f i

1 = P̃ (f1).

Lemma 26. Käyttäen samaa notaatiota kuin edellä
mamb′ + a′

m ̸= 0, eli

deg P̃ = deg P = m.

Todistus. Jos päinvaistoin olisi mamb′ + a′
m = 0, niin

(amfm
1 )′ = a′

mfm
1 + mamf ′

1fm−1
1

= a′
mfm

1 + mamb′fm
1

= (a′
m + mamb′)fm

1 = 0.

Eli amfm
1 olisi vakiofunktio, toisin sanoen kompleksi-

luku. Tämä on ristiriita, koska am ̸= 0 ja f1 on trans-
kendenttinen.

Lemma 27. Jos am on vakiofunktio ja P jakaa poly-
nomin P̃ , niin P on monomi.

Todistus. Koska asteet ovat yhtä suuret, P jakaa po-
lynomin P̃ jos ja vain jos on olemassa sellainen k ∈ K,
että kP = P̃ . Korkeimman asteen (eli m) termeille tä-
mä tarkoittaa

kam = mamb′ + a′
m = mamb′,

missä toinen yhtälö pätee, koska am on vakio. Koska
am ̸= 0 seuraa, että k = mb′. Tällöin a′

imb′ = iaib
′+a′

i,
eli a′

i−ai(m−i)b′ = 0 kaikille i ∈ {0, . . . , m−1}. Mutta
sitten jokaisella indeksillä i(

ai

fm−i
1

)′

= a′
if

m−i
1 − ai(m − i)fm−i

1 b′

(fm−i
1 )2

= a′
i − ai(m − i)b′

fm−i
1

= 0,

eli ai/fm−1
1 on jokin vakio ci ∈ C. Yhtälöstä ai =

cif
m−1
1 ja siitä, että f1 on transkendenttinen, seuraa,

että ai = ci = 0 jokaisella i ∈ {0, . . . , m − 1}. Toisin
sanoen P on monomi amXm.

Sovelletaan nyt edelliset huomautukset yhtälöön (11).
Jokaisella i ∈ {1, . . . , n} on olemassa polynomit
M̃i, Ṽi ∈ K[X] niin, että

(Mi(f1))′ = M̃i(f1) ja (Vi(f1))′ = Ṽi(f1).
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Samalla tavalla on olemassa polynomit S̃0 ja S̃k,i. Yh-
tälöstä (11) tulee sitten

α =
N∑

i=1
ei

u′
i

ui
+

Ñ∑
i=1

εi
M̃i(f1)
Mi(f1) + S̃0(f1) (12)

+
N∑

i=1

mi∑
k=1

S̃k,i(f1)
V k

i (f1)
−

N∑
i=1

mi∑
k=1

k
Sk,i(f1)Ṽi(f1)

V k+1
i (f1)

.

Muistetaan, että jos i ̸= j, niin Mi ̸= Mj ja Vi ̸= Vj .
Olkoot Mi1 , . . . , Mis

ne polynomit joukosta {Mi}, jot-
ka eivät ole yhtä kuin mikään polynomi Vj . Kun mää-
ritellään

L := V m1+1
1 · · · V

m
N

+1
N

Mi1 · · · Mis
,

niin L(f1) on suurin yhteinen nimittäjä identiteetis-
sä (12). Se osamäärä, jonka nimittäjä on korkein alkion
V1(f1) potenssi, löytyy viimeisestä (tupla)summasta in-
deksiarvoilla i = 1 ja k = m1. Voidaan siis kirjoittaa

P(f1)
V m1

1 (f1)V m2+1
2 (f1) · · · V

m
N

+1
N

(f1)Mi1(f1) · · · Mis
(f1)

= −m1
Sm1,1(f1)Ṽ1(f1)

V m1+1
1 (f1)

jollain sopivalla polynomilla P ∈ K[X]. Kerrotaan mo-
lemmat puolet alkiolla − 1

m1
L(f1), jolloin saadaan

− 1
m1

P(f1)V1(f1) = Sm1,1(f1)Ṽ1(f1)

· V m2+1
2 (f1) · · · V

m
N

+1
N

(f1)
· Mi1(f1) · · · Mis

(f1).

Koska f1 on transkendenttinen, Lemmasta 7 seuraa,
että

− 1
m1

PV1 = Sm1,1Ṽ1V m2+1
2 · · · V

m
N

+1
N

Mi1 · · · Mis
.

Jaoton polynomi V1 on selvästi vasemman puolen teki-
jä. Ainoa tapa, jolla V1 voi jakaa oikean puolen, on että
V1 jakaa polynomin Ṽ1. Koska polynomin V1 korkeim-
man asteen termin kerroin on 1, Lemman 27 nojalla
saadaan, että V1 on itse asiassa monomi ja välttämättä
monomi X.

Jos sama prosessi tehdään muille polynomeille Vi, ja
koska Vi ̸= V1, huomaamme, ettei Vi esiinny yh-
tälössä (12). Samanlaisella tavalla voi päätellä, että
M1 = X, eivätkä muut polynomit Mi esiinny. Lopuksi
Lauseesta 9 seuraa, että deg Sk,1 < deg V1 = 1 jokaisel-
la k ∈ {1, . . . , m1}, joten Sk,1 = Sk,1(f1) = σk jollakin
σk ∈ K. Yhtälöstä (12) tulee sitten

α =
N∑

i=1
ei

u′
i

ui
+ ε1

f ′
1

f1
+ S̃0(f1) +

m1∑
k=1

σ′
k

fk
1

−
m1∑
k=1

k
σkf ′

1

fk+1
1

=
N∑

i=1
ei

u′
i

ui
+ ε1b′ +

m1∑
k=1

σ′
k − kb′σk

fk
1

+ S̃0(f1).

Jos yksikin termeistä σ′
k −kb′σk olisi epänolla, niin ker-

tomalla molemmat puolet alkiolla fm1
1 saisimme epä-

nollan polynomin, jolle f1 on juuri. Tämä on ristiriita,
koska f1 on transkendenttinen, joten kaikki nuo termit
ovat nollia ja

α =
N∑

i=1
ei

u′
i

ui
+ ε1b′ + S̃0(f1).

Polynomin S̃0 määritelmästä ja Lemmasta 26 seuraa,
että deg(S̃0) = 0, eli S0 = S0(f1) = s0 ∈ K. Voi siis
kirjoittaa

α =
N∑

i=1
ei

u′
i

ui
+ ε1b′ + s′

0,

ja määrittelemällä v := ε1b + s0 saamme yhtälön (1).

Jos f1 on logaritmifunktio

Tehtävä 28. Tee todistus itse seuraten suunnilleen sa-
maa strategiaa kuin eksponenttifunktion tapauksessa.

Vihje: Lemmat 25, 26 ja 27 pitää muokata. Esimerkiksi
uusi polynomi P̃ on

P̃ (X) := a′
mXm +

m−1∑
i=0

(
a′

i + (i + 1)ai+1
b′

b

)
Xi.

Huomaa, että

• jos am on vakio, niin deg(P̃ ) < deg(P ),

• jos am ei ole vakio, niin deg(P̃ ) = deg(P ).

Implikaation ”⇒” todistuksen jatko: jos
f1 on algebrallinen

Aloitetaan taas yhtälöstä (8) eli

α =
n∑

i=1
di

t′
i

ti
+ w′,

missä t1, . . . , tn, w ∈ K(f1). Koska nyt oletetaan, et-
tä f1 on algebrallinen, on olemassa sellaiset polynomit
P1, . . . , Pn, Q ∈ K[X], että ti = Pi(f1) ja w = Q(f1)
jokaisella i ∈ {1, . . . , n}. Koska K(f1) on kunta, on ole-
massa polynomit R1, . . . , Rn ∈ K[X] niin, että

1
Pi(f1) = Ri(f1). (13)

Yhtälöstä (8) tulee

α =
n∑

i=1
di(Pi(f1))′Ri(f1) + (Q(f1))′. (14)
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Olkoon M ∈ K[X] alkion f1 minimipolynomi kunnan
K suhteen, ja olkoon m := deg(M). Lemman 15 avulla
polynomilla M on m pareittan erillistä meromorfista
juurta z1, . . . , zm, ja yksi niistä on f1. Jollekin sopival-
le polynomille T ∈ K[X, Y ] yhtälön (14) oikea puoli on
yhtä kuin T (f1, f ′

1). Koska z1, . . . , zm ovat saman jaot-
toman polynomin juuret, voimme käyttää Lausetta 24
saaden

α =
n∑

i=1
di(Pi(zk))′Ri(zk) + (Q(zk))′

jokaisella k ∈ {1, . . . , m}. Jos otetaan summa kaikkien
indeksien k ∈ {1, . . . , m} suhteen, saamme

mα =
m∑

k=1

( n∑
i=1

di(Pi(zk))′Ri(zk) + (Q(zk))′
)

.

Tästä ja yhtälöstä (13) seuraa, että

α = 1
m

n∑
i=1

m∑
k=1

di
(Pi(zk))′

Pi(zk) + 1
m

( m∑
k=1

Q(zk)
)′

.

Sovelletaan yhtälöä (2) ensimmäisessä termissä esiin-
tyvään summaan saaden

α = 1
m

n∑
i=1

di

(
Pi(z1)Pi(z2) · · · Pi(zm)

)′

Pi(z1)Pi(z2) · · · Pi(zm)

+ 1
m

( m∑
k=1

Q(zk)
)′

.

Jokaisella i ∈ {1, . . . , n} määritellään polynomi

Si(X1, . . . , Xm) := Pi(X1) · · · Pi(Xm)

renkaassa K[X1, . . . , Xm]. Polynomi Si on symmetri-
nen, joten siihen voidaan soveltaa Lausetta 21, kun
määritellään

ui := Si(z1, . . . , zm) = Pi(z1) · · · Pi(zm),

jolloin saadaan, että ui on kunnan K alkio. Samalla
tavalla voimme ottaa toisen symmetrisen polynomin

S(X1, . . . , Xm) :=
m∑

k=1
Q(Xk),

jolloin v := 1
m S(z1, . . . , zk) = 1

m

∑m
k=1 Q(zk) on kun-

nan K alkio. Eli voimme kirjoittaa

α = 1
m

n∑
i=1

di
u′

i

ui
+ v′,

ja saamme yhtälön (1), kun määritellään ci := di/m.

Seurauksen todistus

Todistetaan lopuksi artikkelin ensimmäisen osan
Lause 30 eli seuraava lause.

Lause 29. Olkoot f, g ∈ C(x), missä f ei ole nolla
eikä g ole vakio, määritellyt jossakin reaalivälissä J .
Tällöin funktiolla

J −→ C,

x 7−→ f(x)eg(x)

on alkeisintegraalifunktio, jos ja vain jos on olemassa
sellainen rationaalifunktio a ∈ C(x), että

f = a′ + ag′. (15)

Todistus. (⇐) Oletetaan, että jokin rationaalifunktio
a ∈ C(x) toteuttaa f = a′ + ag′. Määritellään

h(x) := a(x)eg(x), K := C(x).

Koska eg on eksponenttifunktio kunnan K suhteen,
K(eg) on kunnan C(x) alkeislaajennus. Joten h, joka
on tämän laajennuksen alkio, on alkeisfunktio. Lopuksi
otetaan derivaatta:

h′ = a′eg + ag′eg = (a′ + ag′)eg = feg.

(⇒) Olkoot f epänolla ja g epävakio. Olkoon L kunnan
C(x) sellainen alkeislaajennus, johon kuuluu funktion
feg integraalifunktio y. Silloin kuntaan L kuuluu myös
y′ = feg sekä eg, joten L on kunnan C(x)(eg) alkeis-
laajennus. Olkoon

α := feg, K := C(x)(eg).

Liouvillen lauseen mukaan on olemassa sellaiset
t1, . . . , tn, w ∈ K ja d1, . . . , dn ∈ C, että

α =
n∑

i=1
di

t′
i

ti
+ w′.

Tämän voi kirjoittaa eri tavalla Lauseen 9 nojalla, ja
niin kuin Liouvillen lauseen todistuksessa saamme yh-
tälön

α =
N∑

i=1
ei

u′
i

ui
+

Ñ∑
i=1

εi
(Mi(f1))′

Mi(f1) + (S0(f1))′ (16)

+
N∑

i=1

mi∑
k=1

(Sk,i(f1))′

V k
i (f1)

−
N∑

i=1

mi∑
k=1

k
Sk,i(f1)(Vi(f1))′

V k+1
i (f1)

.

Lauseen 8 mukaan, eg on transkendenttinen kunnan
C(x) suhteen, joten voimme käyttää samaa strategiaa
kuin Liouvillen lauseen todistuksen osassa, joka koskee
transkendenttisia eksponenttifunktioita. Lisäksi kirjoi-
tetaan α eli feg renkaan C(x)[X] jonakin polynomina
pistessä eg, eli

α = feg = P (eg), P (X) := fX.
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Samalla tavalla kuin yllä mainitussa todistuksen osassa
yhtälöstä (16) tulee

P (eg) =
N∑

i=1
ci

u′
i

ui
+ (S0(eg))′ + ε1g′. (17)

Koska vasemmalla puolella oleva polynomi on ensim-
mäistä astetta, niin pitää myöskin olla polynomin S′

0.
Ja transkendenttisen eksponenttifunktion tapauksen
huomausten mukaan pätee myös deg(S0) = 1, joten

S0(X) = s1X + s0

joillakin sopivilla s1, s0 ∈ C(x). Niinpä yhtälöstä (17)
tulee

feg =
N∑

i=1
ci

u′
i

ui
+ (s1eg + s0)′ + ε1g′

=
N∑

i=1
ci

u′
i

ui
+ s′

1eg + s1g′eg + s′
0 + ε1g′.

Kirjoittamalla eri tavalla saamme

(f − s′
1 − s1g′)eg =

N∑
i=1

ci
u′

i

ui
+ s′

0 + ε1g′,

missä oikea puoli ei sisällä funktiota eg. Jos funk-
tion eg kerroin vasemmalla puolella olisi epänolla, sai-
simme ristiriidan transkendentisuuden kanssa, joten
f − s′

1 − s1g′ = 0 eli

f = s′
1 + s1g′.

Koska s1 ∈ C(x), saamme halutun yhtälön (15).

Viimeisiä kommenteja

Niin kuin sanottu ensimmäisessä osassa on tämä kirjoi-
tus artikkelin [1] inspiroima, paitsi että tässä teemme
kaiken tavallisen derivaatan ”perus”tapauksessa. Peri-
aatteessa on mahdollista analysoida mikä vaan deri-
vaatta seuraavan määritelmän mukaan.

Määritelmä 30. Differentiaalikunta on kunta K,
jossa määritellään sellainen funktio D : K → K, jota
kutsutaan derivaataksi, että jokaisilla alkioilla a, b ∈
K pätee

D(a + b) = D(a) + D(b) ja D(ab) = D(a)b + aD(b).

Esimerkiksi tavallinen derivaatta on derivaatta edelli-
sen määritelmän mukaan. Jos D on derivaatta, niin
on −D myöskin. Tämän kirjoituksen tulokset pitävät
paikkansa yleisemmässä tapauksessa, että kyseessä on
yleinen derivaatta. Matematiikan osa-alue, joka käsit-
telee tällaisia käsitteitä ja tuloksia on differentiaalial-
gebra (engl. differential algebra).

Viitteet

[1] C. De Lellis. Il teorema di Liouville ovvero perché
“non esiste” la primitiva di ex2 . La Matematica nel-
la Società e nella Cultura. Rivista dell’Unione Ma-
tematica Italiana 7.1 (2014): 55–97.

[2] J. Häsä, J. Rämö. Johdatus abstraktiin algebraan.
Gaudeamus (2015).

[3] M. Orlich. Miksei funktiota e−x2 voi integroida?
(Osa 1/2). Solmu 2/2025.


	Miksei funktiota e-x2 voi integroida? (Osa 2/2)

