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Rahapeliongelma

Jukka Liukkonen
Mat. yo. evp.

Pythonin kanssa peliongelman kimp-
puun

Professori Daniel Litt tutkii leipätyönään algebrallis-
ta geometriaa Toronton yliopistossa. Hän kertoo löy-
täneensä hyödyllisiä välineitä toiselta matematiikan
osa-alueelta, lukuteoriasta. Vapaa-aikaansa Litt viet-
tää kolmannen matematiikan osa-alueen, todennäköi-
syyslaskennan parissa. Hän keksii huvikseen todennä-
köisyysprobleemoita, jotka johtavat ihmisen intuition
helposti harhaan. Tässä on yksi Littin probleemoista:

Kolikkoa heitetään sata kertaa. Alice saa pisteen aina,
kun kaksi kruunaa tulee peräkkäin. Bob saa pisteen ai-
na, kun kruunaa seuraa klaava. Eniten pisteitä kerän-
nyt pelaaja voittaa pelin. Kumpi on todennäköisempi
voittaja?

Siis hetkinen: kaikki neljä mahdollista kruunan ja klaa-
van järjestettyä paria ovat yhtä todennäköisiä, joten
Alice ja Bob saavat sadan heittokerran pelissä kumpi-
kin keskimäärin saman määrän pisteitä, ja tuo määrä
on 99/4 = 24,75, sillä sadan kolikon jonossa on vain 99
kolikkoväliä ja saman verran kahden peräkkäisen koli-
kon muodostamia pareja. Tällöinhän Alice on yhtä to-
dennäköinen voittaja kuin Bob? Varmistetaanpa asia
kirjoittamalla pieni kolikonheittoa simuloiva Python-
ohjelma.

No, Python-ohjelma kirjoitettiin, mutta siinä vaikut-
ti olevan jokin bugi, sillä onnetar suosi säännöllises-
ti Bobia, jolla voiton todennäköisyys oli aina kolmisen
prosenttiyksikköä suurempi kuin Alicella. Bugia ei sit-

keistä etsinnöistä huolimatta löydetty. Heräsi epäilys,
että vika on jossain muualla, esimerkiksi aritmeettis-
loogisessa yksikössä otsaluun takana. Hoksattiin tut-
kia miten käy, jos heittosarja on paljon lyhyempi, vaik-
kapa neljä heittoa? Oheisesta puukaaviosta, jossa H
tarkoittaa kruunaa (heads) ja T tarkoittaa klaavaa
(tails), nähdään huolellisesti katsomalla, että neljän ko-
likonheiton tapauksessa kaikista mahdollisista 16 pe-
listä Alice voittaa neljä ja Bob kuusi. Jäljelle jäävät
kuusi ovat tasapelejä. Python-ohjelma taisi olla kun-
nossa alun alkaenkin.
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Peli ja peliavaruus

Kolikonheiton tulosjonoa mallinnetaan yhtä pitkällä
kirjainten H ja T muodostamalla jonolla. Alice saa
pisteen jokaisesta HH -esiintymästä ja Bob jokaisesta
HT -esiintymästä. Esimerkiksi kirjainjono HTTHHTH
vastaa erästä seitsemän kolikonheiton tulosjonoa. Siitä
tulee Alicelle yksi piste ja Bobille kaksi. Täydellisyy-
den vuoksi otetaan mukaan myös pelaajat Cheryl, joka
saa pisteen jokaisesta TH -esiintymästä, ja Dustin, jo-
ka saa pisteen jokaisesta TT -esiintymästä. Yleisyyttä
tavoitellen sovitaan, että kolikkoa heitetään n kertaa.
Tällöin puhutaan n -pelistä. Kaikkien mahdollisten n-
pelien joukkoa kutsutaan n-peliavaruudeksi. Pelaa-
jien nimet lyhennetään muotoon A, B, C ja D. Toi-
sesta heittokerrasta alkaen joku nelikosta saa pisteen
jokaisella heittokerralla.

Oheinen suunnattu verkko esittää pelin kulkua sen jäl-
keen, kun kolikkoa on heitetty kaksi kertaa. Verkon sol-
mujen nimet A, B, C ja D kertovat, kuka saa pisteen
kyseiseen solmuun tultaessa. Kaaret tai nuolet

AA, AB, BC, BD, CA, CB, DC, DD

vastaavat siirtymiä pelitilanteesta seuraavaan kolikon-
heiton myötä. Esimerkiksi tulosjonoa

HHTTHTTT

vastaa pelitilanne

ABDCBDD,

jossa Alicella ja Cherylillä on yksi piste kummallakin,
Bobilla on kaksi pistettä ja Dustinilla kolme pistettä.
Tulosjonot ja pelitilanteet vastaavat toisiaan kääntäen
yksikäsitteisesti. Huomaa, että kaikki kirjaimista A, B,
C ja D muodostetut jonot eivät edusta pelitilannet-
ta: esimerkiksi AC ei voi toteutua. Vain verkkokaavion
mukaiset jonot ovat pelitilanteita.
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Kun verkon solmut kootaan matriisiksi

G =
[

A B
C D

]
,

kaikki kaaret saadaan neliöstä

G2 =
[

A B
C D

]2
=

[
AA + BC AB + BD
CA + DC CB + DD

]
,

mutta mikä parasta, kaikki n kolikonheittoa vastaa-
vat n − 1 kaaren reitit saadaan matriisipotenssista
Gn−1. Lukija voi tulla vakuuttuneeksi tästä laskemalla
potenssin G3 ja vertaamalla sitä verkkokaavioon. On
tärkeää huomata, että toistaiseksi matriisialkiot ovat
vain symboleja, joille tulon vaihdantalaki ei ole voi-
massa, joten laskutoimituksissa kannattaa olla huolelli-
nen. Symbolien tai symbolijonojen tulo tarkoittaa vain
niiden asettamista peräkkäin. Plusmerkki symbolijono-
jen välissä toimii erottimena, jolla kaksi jonoa erote-
taan toisistaan. Tällainen “yhteenlasku” on vaihdan-
nainen. Matriiseilla laskemisen säännöt voidaan tarvit-
taessa opiskella Wikipedian sivulta [6].

Huomautus. Merkkijonoilla laskeminen ei välttämät-
tä ole epämääräistä puuhastelua. Siitä tulee aivan oi-
keaa matematiikkaa, kun otetaan käyttöön vapaan al-
gebran käsite (ks. [4]). Nyt on kysymys aakkostos-
ta {A, B, C, D} muodostettujen merkkijonojen virittä-
mästä vapaasta Z-algebrasta.

Pelitilanteesta pistetilanteeseen

Pistelaskentaan päästään käsiksi korvaamalla vaihdan-
talakia noudattamattomat symbolit A, B, C ja D vaih-
dantalakia noudattavilla symboleilla a, b, c ja d mai-
nitussa järjestyksessä. Esimerkiksi Bobin pisteet peliti-
lanteessa ABDCBDD saadaan muodostamalla vastaa-
va pistetilannetermi ab2cd3 ja katsomalla symbolin b
eksponentti: sehän on kaksi. Siirtymällä pelitilanteista
pistetilanteisiin menetetään tieto siitä, missä järjestyk-
sessä pisteet ovat kullekin kertyneet. Pelimatriisin G
tilalle astuu tällöin pistematriisi

S =
[

a b
c d

]
.

Kaikkien mahdollisten 3-pelien pistetilanteet nähdään
matriisista

S2 =
[

a2 + bc ab + bd
ac + cd bc + d2

]
.

Matriisialkioiden summasta

1T S21 = a2 + bc + ab + bd + ac + cd + bc + d2,

missä
1 =

[
1
1

]
, 1T =

[
1 1

]
,

havaitaan Alicen saavan yhdestä pelistä keskimäärin
(2+0+1+0+1+0+0+0)/8 = 1/2 pistettä, ja Bobin
vastaava keskiarvo on (0+1+1+1+0+0+1+0)/8 =
1/2. Keskiarvojen yhtäsuuruus ei ole yllätys. Ensim-
mäisen kappaleen lukemisen jälkeen ei enää yllätä se-
kään, että Alice voittaa Bobin kahdessa pelissä, kun
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taas Bob voittaa Alicen kolmessa pelissä. Miten käy,
kun kolikkoa heitetään kolmen heiton sijaan sata ker-
taa? Tulosjonoja on aika monta. Niiden lukumäärä on
31-numeroinen kokonaisluku.
Huomautus. Siirtyminen pelitilanteista pistetilantei-
siin merkitsee siirtymistä vapaasta Z-algebrasta vastaa-
vaan polynomialgebraan Z[a, b, c, d] (ks. [7]).

Fokus Aliceen ja Bobiin

Kuten lukija varmaan jo huomasi, parivaljakoiden
(Alice, Bob) ja (Dustin, Cheryl) kesken vallitsee sym-
metria; toisin sanoen, kun verkkokaaviossa A ja D, B
ja C sekä H ja T vaihdetaan keskenään, kaavion infor-
maatiosisältö ei muutu lainkaan. Sama vaikutus, siis ei
vaikutusta ollenkaan, saadaan aikaan kiertämällä kaa-
viota 180◦.
Kun ollaan kiinnostuneita pelkästään Alicen ja Bobin
keskinäisestä taistosta, pistetilannetermeissä c ja d kor-
vataan ykkösillä. Silloin

S =
[

a b
1 1

]
, S2 =

[
a2 + b ab + b
a + 1 b + 1

]
,

ja kahden muuttujan a ja b pistetilannepolynomi saa
muodon

1T S21 = a2+b+ab+b+a+1+b+1 = a2+ab+a+3b+2.

Tästä riisutustakin versiosta nähdään Alicen ja Bobin
pisteet sekä heidän kaksintaistelussa voittamiensa pe-
lien määrät.
Huomautus. Kun c ja d korvataan ykkösillä, polyno-
mialgebra Z[a, b, c, d] samalla projisoidaan alialgebraksi
Z[a, b].

Fokus voitettujen pelien lukumäärään

Jos kiinnostuksen kohteena on pelkästään artikkelin
alussa mainittu kysymys siitä, kumpi on todennäköinen
voittaja, Alice vai Bob, pistetilannetermejä modifioi-
daan edelleen sopimalla, että ab = 1, jolloin tasapelit
redusoituvat ykkösiksi. Esimerkiksi peliin ABDCBDD
liittyvä pistetilannetermi ab2cd3, joka on jo degene-
roitunut muotoon ab2, pelkistyy sopimuksen jälkeen
pelkäksi alkioksi b. Tästä nähdään, että Bob voittaa
Alicen yhdellä pisteellä kyseisessä pelissä. Polynomi

1T S21 = a2 + ab + a + 3b + 2
= a2 + 1 + a + 3b + 2
= a2 + a + 3b + 3

kertoo meille, että kolmesta kolikonheitosta voi syntyä
kaikkiaan 8 = 12 + 1 + 3 · 1 + 3 = 23 (sijoita a = b = 1)
erilaista peliä. Niistä Alice voittaa yhden kahdella pis-
teellä (a2) ja yhden yhdellä pisteellä (a), kun Bob puo-
lestaan voittaa kolme peliä yhdellä pisteellä (3b). Alicen

ja Bobin keskinäisessä kisassa tasapelejä on kolme (3).
Degeneroitunutkin polynomi on täten sangen informa-
tiivinen.

Huomautus. Sopimus ab = 1 merkitsee, että polyno-
mialgebra Z[a, b] ensin projisoidaan polynomialgebrak-
si Z[a] ja sen jälkeen lokalisoidaan Laurentin polyno-
mialgebraksi Z[a, a−1] (ks. [5]).

Heittojen lukumäärä n + 1

Polynomi 1T Sn1 monimutkaistuu vauhdikkaasti, kun
n kasvaa. Sen aste kasvaa lineaarisesti, mutta kertoi-
met eksponentiaalisesti, minkä todistaminen jätetään
lukijalle. Esimerkiksi

1T S61 = a6 + a5 + 2a4 + 8a3 + 12a2

+ 18a + 30 + 32b + 19b2 + 5b3.

Tässä termit on kirjoitettu alkion a alenevien potens-
sien mukaan, kun otetaan huomioon sopimus eli yhtä-
lö ab = 1, jonka mukaan b = a−1 on alkion a kään-
teisalkio. Matriisipotenssien laskemista on mahdollista
helpottaa diagonalisoimalla. Menetelmään tarkemmin
puuttumatta todetaan, että matriisi S voidaan esittää
hajotelmana

S = P ΛP −1,

missä P −1 on matriisin P käänteismatriisi, so.

P P −1 = P −1P = I, I =
[

1 0
0 1

]
,

ja Λ on lävistäjämatriisi eli muotoa[
λ1 0
0 λ2

]
.

Silloin on voimassa

Sn = P ΛnP −1,

ja keskimmäinen matriisipotenssi on helppoa laskea,
sillä

Λn =
[

λn
1 0
0 λn

2

]
.

Lukija voi verifioida nämä kaksi yhtälöä harjoitusteh-
tävänä. Osoittautuu, että hajotelma S = P ΛP −1 to-
teutuu, kun lävistäjäalkioina ovat

λ1 = 1
2

(
a + 1 +

√
(a − 1)2 + 4b

)
,

λ2 = 1
2

(
a + 1 −

√
(a − 1)2 + 4b

)
,

ja kerroinmatriisit ovat esimerkiksi

P =
[

λ1 − 1 λ2 − 1
1 1

]
,

P −1 = 1
λ1 − λ2

[
1 1 − λ2

−1 λ1 − 1

]
.
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Tämänkin toteen näyttäminen normaaliin tapaan las-
kemalla jätetään lukijalle harjoitustehtäväksi.

Huomautus. Symbolien a ja b olemuksesta tiedetään
vain, että ab = 1. Ei ole tarkoituksenmukaista esitel-
lä uusia algebrallisia struktuureja aikaisemmissa huo-
mautuksissa esiteltyjen lisäksi, joten edellä mainittu-
jen neliöjuurten olemus ja olemassaolo jäävät hämä-
rän peittoon. Kun tavoitteena on matriisitulon 1T Sn1
esittäminen kokonaislukukertoimisena polynomina, ja
neliöjuuret lopulta supistuvat lausekkeista pois, tällai-
nen formaali eli muodollinen kaavojen pyörittely näh-
täköön pelkästään keinona päästä lopputulokseen. Me-
nettely voidaan hyväksyä ainakin silloin, kun lopputu-
loksen pätevyys on mahdollista verifioida laillisin kei-
noin. Monesti jonkin lausekkeen keksiminen on hyvin
vaikeaa, mutta kun lauseke lopulta tavalla tai toisella
keksitään, sen todistaminen päteväksi esimerkiksi in-
duktiolla on hyvin yksinkertaista. Sitä paitsi: eikös jo-
ku ole joskus sanonut, että “tarkoitus pyhittää keinot”.

Yleiseen (n+1)-peliin liittyvän tehtävän ratkaisun vai-
keus piilee siinä, että potenssien λn

1 ja λn
2 ja lopulta

polynomin 1T Sn1 laskeminen johtaa monimutkaisiin
lausekkeisiin. Kun kyseinen polynomi on jollain keinol-
la saatu laskettua, se voidaan esittää kanonisessa muo-
dossa

p(a, b) =
I∑

i=1
αia

i + γ +
J∑

j=1
βjbj .

Tasapelien lukumäärä on

p(0, 0) = γ.

Alicen ja Bobin voittamien pelien lukumäärät ovat vas-
taavasti

p(1, 0) − γ =
I∑

i=1
αi ja p(0, 1) − γ =

J∑
j=1

βj .

Huomautus. Nollan sijoittaminen muuttujan a tai b
paikalle saattaa tuntua oudolta, kun muistetaan sopi-
mus ab = 1. Idea on siinä, että tuota sopimusta käy-
tetään saatettaessa polynomin lauseketta edellä esitet-
tyyn kanoniseen muotoon. Tämän jälkeen on enää ky-
symys polynomin kertoimista ja niiden summista. Jos
ne saadaan selville sijoittamalla nolla muuttujan pai-
kalle, tälle polynomin syntyhistoriaan nähden laitto-
malle sijoitukselle ei ole mitään estettä. Kun kanoni-
sointiin liittyvät laskut ovat vielä kesken, nollan sijoit-
taminen muuttujan paikalle johtaa väärään lopputu-
lokseen. Esimerkiksi jos yhtälöketjun

(a + b)2 = a2 + 2ab + b2 = a2 + 2 + b2

ensimmäiseen yhtälöön sijoitetaan a = b = 0 vakio-
termin paljastamiseksi, saadaan väärä tulos 0. Sijoitus
sopii tehdä vasta loppuun asti laskettuun kanoniseen
muotoon. Silloin saadaan oikea tulos 2.

Eräs keino mutkikkaiden lausekkeiden hallitsemiseksi
on käyttää laskentaan jotakin symbolisen laskennan
ohjelmistoa. Näin on tehty mm. artikkelissa [1], vaik-
kakin eri lähtökohdista kuin edellä esitetty. Symboli-
sen laskennan lisäksi todistusvoimaa saadaan komplek-
sianalyysista kuten artikkelissa [3]. Itse asiassa poly-
nomi p(a, b) voidaan kirjoittaa vastaavaksi kompleksi-
muuttujan z Laurentin sarjaksi

L(z) =
I∑

i=1
αiz

i + γ +
J∑

j=1
βjz−j ,

joka tässä tapauksessa, kun termejä on vain äärellinen
määrä, on pelkkä Laurentin polynomi. Jos funktion L
lauseketta ei tunneta sarjamuodossa, sarjan tuntemat-
tomat kertoimet saadaan joskus selville kompleksista
integrointia käyttäen. Vaikka se ei onnistuisikaan, in-
tegraalit saattavat kuitenkin kertoa jotain oleellista in-
formaatiota kertoimista.

Tuloksia

Vaikka kolikonheittoprobleema johtaa pitkiin laskui-
hin, sitä on hyvin helppoa tutkia kokeellisesti. Sadan
heiton kisaa Alicen ja Bobin välillä simuloitiin tätä ar-
tikkelia varten yksinkertaisella Python-ohjelmalla, joka
käytti heittotulosten arpomiseen satunnaislukugene-
raattoria. Kymmenestämiljoonasta pelistä Alice voit-
ti 4 574 682, Bob voitti 4 859 895, ja tasapelejä tuli
565 423 kappaletta. Tämän kokeen valossa Alice voittaa
pelin noin 45,7 %:n todennäköisyydellä, Bob voittaa
noin 48,6 %:n todennäköisyydellä, ja peli päättyy tasan
noin 5,7 %:n todennäköisyydellä. Artikkelissa [1] las-
ketut teoreettiset arvot ovat vastaavasti 0,4576402592,
0,4858327983 ja 0,0565269425.
Eräs kollega laski Mathematica-ohjelmalla polynomin
p(a, b) = 1T S991 arvot p(1, 0), p(0, 1) ja p(0, 0), kun

S =
[

a b
1 1

]
,

ja sai sitä kautta selville, miten monta 2100:sta mah-
dollisesta pelistä päätyy Alicen tai Bobin voittoon tai
tasapeliin:

Bob voittaa 615 866 238 418 960 422 359 689 555 420
Alice voittaa 580 127 949 239 420 834 381 088 427 404

Tasapeli 71 656 412 569 848 144 755 925 222 552
Yhteensä 1 267 650 600 228 229 401 496 703 205 376

Artikkelissa [3] todistetaan, että Bob voittaa n-pelin
todennäköisemmin kuin Alice, kun n ≥ 3. Toisin sa-
noen Bob voittaa suuremman osan n-peliavaruuden
peleistä kuin Alice, kun n ≥ 3. Artikkelissa todis-
tetaan myös, että kumpikin todennäköisyys lähestyy
raja-arvonaan lukua 1/2, kun n kasvaa rajatta, ja to-
dennäköisyyksien erotus

P
(
{Bob voittaa}

)
− P

(
{Alice voittaa}

)
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vieläpä käyttäytyy asymptoottisesti kuin

1
2
√

nπ
+ O

(
n−3/2

)
.

Pohdintaa

Alicelle pisteen tuovia pareja HH on tasan yhtä mon-
ta kuin Bobille pisteen tuovia pareja HT, kun kaikki
n-pelit otetaan mukaan laskentaan. Siksi on ehkä yl-
lättävää, että Bob kuitenkin voittaa suuremman osan
yksittäisistä n-peleistä kuin Alice. Koska tarkastelu kä-
sittää koko peliavaruuden, mukana ovat myös sellaiset
pelit, joissa Alice saa yli n/2 pistettä. Tällaisiin pelei-
hin sisältyvät Alicen pisteet ovat poissa muihin peleihin
sisältyvistä Alicen pisteistä. Bobin sen sijaan on mah-
dotonta saada yhdestäkään pelistä enempää kuin n/2
pistettä. Näin ollen Bobin pisteet ovat tasaisemmin ja-
kautuneet n-pelien kesken. Kärjistäen voidaan sanoa,
että Alice voittaa pienen määrän pelejä isolla pistemää-
rällä, jolloin Bob saa tilaisuuden voittaa suuren mää-
rän pelejä pienellä pistemäärällä. Tällainen heuristiik-
ka tukee Bobin onnekkuutta, mutta kokonaan toinen
asia on siihen pohjautuvan todistuksen kirjoittaminen,
jos se ylipäänsä on mahdollista.

Daniel Litt haluaisi nähdä Bobin onnekkuudelle todis-
tuksen, jossa intuitio ei peittyisi teknisten yksityiskoh-
tien taakse. Joskus todistukset ovat sellaisia, että väite
kyllä putkahtaa monimutkaisen päättelyketjun ja hir-
muisten laskelmien jälkeen ulos, ja kaikki pystyvät ve-
rifioimaan todistuksen päteväksi vaihe vaiheelta, mutta
kukaan ei oikeastaan ymmärrä, mitä todistuksessa ta-
pahtuu. Littin probleema yleiselle n-pelille on sen luon-
toinen, että joku aiheesta kiinnostunut nuori opiskeli-
ja, jolla ei vielä ole kokemuksen painolastia harteillaan,
saattaisi onnistua keksimään omintakeisen ratkaisun,
johon urautuneiden ammattilaisten mielikuvitus ei ole

riittänyt. Quanta Magazine -verkkolehdessä [2] on pro-
fessori Littin haastattelu.
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